Skip to main content
Log in

Degradation of Alizarin Red S by Heterogeneous Fenton-Like Oxidation Over Copper-Containing Sand Catalysts

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Two new heterogeneous catalysts (Cu-sand) have been synthesized by supporting copper on the surface of natural sand using two defined methods such as chemical vapor deposition (CVD) and dry evaporation (DE). The Cu-sand catalysts were characterized by several techniques. SEM-EDX analysis indicated that 13.86 wt% of copper species were dispersed on the surface of Cu-sand (CVD) catalyst whereas 11 wt% were agglomerated on the Cu-sand (DE) surface. The presence of copper species was more noticeable in the XRD pattern for the Cu-sand (CVD) catalyst. The catalytic performance of the prepared catalysts was evaluated in the Fenton-like oxidation of Alizarin red S dye (ARS). The reactivity and stability of the two catalysts were differentiated by studying the influence of the supported amount of copper, activity of leachate and the reuse of catalyst on the conversion of initial concentration of ARS. ARS oxidation has been investigated under various experimental conditions. The best ARS conversion rate was about 95% when using Cu-sand (CVD) catalyst in optimal conditions: [H2O2]0 = 10 mmol/L, temperature = 40 °C and the addition of H2O2 in two stages (0 min and 20 min of treatment). CVD method makes it possible to prepare an efficient and stable catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Di Daniele T, Santo Fabio C, Michele T, Gaspare V (2019) Treatment of high strength industrial wastewater with membrane bioreactors for water reuse: Effect of pre-treatment with aerobic granular sludge on system performance and fouling tendency. J Water Process Eng 31:100859

    Article  Google Scholar 

  2. Sainan S, Tingting J, Yujin L, Jiaxiu S, Yuanyuan Z, Dong A (2020) Characteristics of organic pollutants in source water and purification evaluations in drinking water treatment plants. Sci Total Environ 733:139277

    Article  Google Scholar 

  3. Dong X, Lai Yoke L, Fang Yee L, Zhiyang L, Hao Z, Say Leong O, Jiangyong H (2020) Water treatment residual: a critical review of its applications on pollutant removal from stormwater runoff and future perspectives. J Environ Manage 259:109649

    Article  Google Scholar 

  4. Aggeliki T, Emmanouil-Nikolaos P, Zisis V, Athina K, Katerina K, Euphemia PM (2019) Assessment and management of pesticide pollution at a river basin level part I: Aquatic ecotoxicological quality indices. Sci Total Environ 653:1597–1611

    Article  Google Scholar 

  5. Hua D, Ren W, Wenya L, Lingling H, BowenYa’nan LD, Huahong S (2020) Microplastic pollution in water and sediment in a textile industrial area. Environ Pollut 258:113658

    Article  Google Scholar 

  6. Swarnkumar R, Jabez OW (2020) Heavy metal determination and aquatic toxicity evaluation of textile dyes and effluents using Artemia salina. Biocatal Agric Biotechnol 258:113658

    Google Scholar 

  7. Hualing C, Jieying L, Xun-an N, Xiaojun L, Yang L (2020) Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J Environ Sci 91:199–208

    Article  Google Scholar 

  8. Wonyong C (2006) Pure and modified TiO2 photocatalysts and their environmental applications. Catal Surv from Asia 10:16–28

    Article  Google Scholar 

  9. Houria G, Oualid H (2009) Intensification of sonochemical decolorization of anthraquinonic dye Acid Blue 25 using carbon tetrachloride. Ultrason Sonochem 16:455–461

    Article  Google Scholar 

  10. Martinez-Huitle CA, Rodrigo MA, Sires I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407

    Article  CAS  PubMed  Google Scholar 

  11. Gong C, Chen F, Yang Q, Luo K, Yao FB, Wang SN, Wang XL, Wu JW, Li XM, Wang DB, Zeng GM (2017) Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chem Eng J 321:222–232

    Article  CAS  Google Scholar 

  12. Mélinda G, Jennifer D, Marc P, Carolina GM, Thomas G, Carmen MN (2020) Comparative efficiency of three advanced oxidation processes for thiosalts oxidation in mine-impacted water. Miner Eng 152:106349

    Article  Google Scholar 

  13. Jong-Hwan P, Jim JW, Negar T, Ronald DD (2019) Removal of Eriochrome Black T by sulfate radical generated from Fe-impregnated biochar/persulfate in Fenton-like reaction. J Ind Eng Chem 71:201–209

    Article  Google Scholar 

  14. Runhua W, Yajuan H, Gang C (2020) Heterogeneous oxidation of isoprene SOA and toluene SOA tracers by ozone. Chemosphere 249:126258

    Article  Google Scholar 

  15. Marcelina R, Małgorzata R, Andrzej K, Paweł M, Aneta Ś, Urbano D, Antonio EP, Wojciech M, Lucjan C (2020) Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites. Micropor. Mesopor Mat 302:110219

    Article  Google Scholar 

  16. Guangrui W, Ying L, Jinwen Y, Zifeng L, Xiaojiao Y (2020) Electrochemical oxidation of methyl orange by a Magnéli phase Ti4O7 anode. Chemosphere 241:125084

    Article  Google Scholar 

  17. Pankaj SS, Parag RG (2020) Ultrasound assisted oxidative deep-desulfurization of dimethyl disulphide from turpentine. Ultrason Sonochem 63:104925

    Article  Google Scholar 

  18. Abdessalem O, Wiem H, Mourad B (2020) Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst. J Photochem Photobiol A 393:112444

    Article  Google Scholar 

  19. Abdessalem O, Mourad B, Feten B (2015) Industrial application of photocatalysts prepared by hydrothermal and sol-gel methods. J Ind Eng Chem 21:356–362

    Article  Google Scholar 

  20. Abdessalem O, Mourad B (2019) Influence of the origin of carbon support on the structure and properties of TiO2 nanoparticles prepared by dip coating method. Arab J Chem 12:2926–2936

    Article  Google Scholar 

  21. Jae Sung L (2005) Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal Surv from Asia 9:217–227

    Article  Google Scholar 

  22. Guoquan Z, Fenglin Y, Lifen L (2009) Comparative study of Fe2+/H2O2 and Fe3+/H2O2 electro-oxidation systems in the degradation of amaranth using anthraquinone/polypyrrole composite film modified graphite cathode. J Electroanal Chem 632:154–161

    Article  Google Scholar 

  23. Ziembowicz S, Kida M, Koszelnik P (2019) Reservoir bottom sediments as heterogeneous catalysts for effective degradation of a selected endocrine-disrupting chemical via a Fenton-like process. J Water Process Eng 32:100950

    Article  Google Scholar 

  24. Filipa D, Maldonado-Hódar FJ, Pérez-Cadenas AF, Madeira Luis M (2009) Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels. Appl Catal B-Environ 85:139–147

    Article  Google Scholar 

  25. Kijung K, Dong KY, Ungyu P (2017) CuO embedded silica nanoparticles for tungsten oxidation via a heterogeneous Fenton-like reaction. Microelectron Eng 183:58–63

    Google Scholar 

  26. Bel Hadjltaief H, Costa PD, Beaunier P, Gálvez ME, Benzina M (2014) Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Appl Clay Sci 91:46–54

    Article  Google Scholar 

  27. Abdessalem O, Lambert SD, Geens J, F eten B, Mourad B, (2014) Synthesis, surface characterization and photocatalytic activity of TiO2 supported on almond shell activated carbon. J Mater Sci Technol 30:894–902

    Article  Google Scholar 

  28. Abdessalem O, Mourad B (2014) Almond shell activated carbon: adsorbent and catalytic support in the phenol degradation. Environ Monit Assess 186:3875–3890

    Article  Google Scholar 

  29. Boujelben N, Bouzid J, Elouear Z (2009) Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems. J Hazard Mater 163:376–382

    Article  CAS  PubMed  Google Scholar 

  30. Sdiri A, Higashi T, Bouaziz S, Benzina M (2014) Synthesis and characterization of silica gel from siliceous sands of southern Tunisia. Arab J Chem 7:486–493

    Article  CAS  Google Scholar 

  31. Hmani E, Chaabane ES, Youssef S, Ridha A (2009) Electrochemical degradation of waters containing O-Toluidine on PbO2 and BDD anodes. J Hazard Mater 170:928–933

    Article  CAS  PubMed  Google Scholar 

  32. Collectif AFNOR. La qualité de l’eau, tome II, Analyses organoleptiques. Mesures physico-chimiques. Paramètres globaux. Composés organiques, NFT 90-102. Groupe Eyrolles S.A AFNOR 1999

  33. Trabelsi W, Benzina M, Bouaziz S (2009) Physico-chemical characterisation of the Douiret sand (Southern Tunisia): valorisation for the production of Silica Gel. Phys Procedia 2:1461–1467

    Article  CAS  Google Scholar 

  34. Frank LYL, Xijun H (2003) A new system design for the preparation of copper/activated carbon catalyst by metal-organic chemical vapor deposition method. Chem Eng Sci 58:687–695

    Article  Google Scholar 

  35. Zhiwei H, Fang C, Jingjing X, Jianliang Z, Jing C, Chungu X (2012) Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition–precipitation methods: Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol. Catal Today 183:42–51

    Article  Google Scholar 

  36. Chang-Mao H (2009) Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution. J Hazard Mater 166:1314–1320

    Article  Google Scholar 

  37. Biswajoy B, Subrata K, Sumit KD, Suman B, Debasis R, Tapas KM, Sukhen D, Papiya N (2013) In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surf. B 108:358–365

    Article  Google Scholar 

  38. Chaudhry SA, Khan TA (2017) Equilibrium, kinetic and thermodynamic studies of Cr (VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J Mol Liq 236:320–330

    Article  CAS  Google Scholar 

  39. Elliot LB, Thomas W, Patrick JM, Keith R, Alex CH, Silvia I, Samantha KC, Gregory AC, Stewart FP (2015) Structure and spectroscopy of CuH prepared via borohydride reduction. Acta Cryst B 71:608–612

    Article  Google Scholar 

  40. Rasmita N, Farida AA, Dilip KM, Debes R, Aswal VK, Susanta KS, Binita N (2020) Fabrication of CuO nanoparticle: an efficient catalyst utilized for sensing and degradation of phenol. J Mater Res Technol 9:11045–11059

    Article  Google Scholar 

  41. Mengchao S, Zetao C, Saba F, Thor F, Xueli M, Yin X, Chengtie W (2016) Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater 30:334–344

    Article  Google Scholar 

  42. Nayak NB, Nayak BB (2016) Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders. Sci Rep 6

  43. Lai L, Lili Z, Chun H (2015) Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres. Chem Eng J 274:298–306

    Article  CAS  Google Scholar 

  44. Fethi K, Yan L, Rawan A, Awadh A (2015) Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Appl Clay Sci 116:23–30

    Google Scholar 

  45. Carvalho MCNAD, Passos FB, Schmal M (2000) The behavior of Cu/ZSM-5 in the oxide and reduced form in the presence of NO and methanol. Appl Catal A-Gen 193:265–276

    Article  Google Scholar 

  46. Muthusamy PP, Sekar K, Rajamanickam M, Adam FL, Anand R (2017) Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1. Appl Surf Sci 393:67–73

    Article  Google Scholar 

  47. Mendes FMT, Schmal M (1997) The cyclohexanol dehydrogenation on Rh-Cu/A12O3 catalysts Part 1. Characterization of the catalyst. Appl Catal A-Gen 151:393–408

    Article  CAS  Google Scholar 

  48. Lovjeet S, Pawan R, Shri C (2016) Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye. Sep Purif Technol 170:321–336

    Article  Google Scholar 

  49. Espinós JP, Morales J, Barranco A, Caballero A, Holgado JP, GonzálezElipe AR (2002) Interface effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J Phys Chem B 106:6921–6929

    Article  Google Scholar 

  50. Karthikeyan S, Dionysiou DD, Lee AF, Suvitha S, Maharaja P, Wilson K, Sekaran G (2016) Hydroxyl radical generation by cactus-like copper oxide nanoporous carbon catalysts for microcystin-LR environmental remediation. Catal Sci Technol 6:530–544

    Article  CAS  Google Scholar 

  51. Haipeng L, Rongqing C, Zhiliang L, Chunfang D (2019) Waste control by waste: fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue. Sci Total Environ 683:638–647

    Article  Google Scholar 

  52. Yang S, Pengfei T, Doudou D, Zixu Y, Weizhi W, Hui X, Jing X, Yi-Fan H (2019) Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction. Appl Catal B- Environ 258:117985

    Article  Google Scholar 

  53. Li H, Li Y, Xiang L, Huang Q, Qiu J, Zhang H, Sivaiah MV, Baron F, Barrault J, Petit S, Valange S (2015) Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fesmectite: response surface approach, degradation pathway, and toxicity evaluation. J Hazard Mater 287:32–41

    Article  CAS  PubMed  Google Scholar 

  54. Chao B, He Z, Lincheng Z, Yanming S, Junjun M, Qiong W (2015) Preparation of copper doped magnetic porous carbon for removal of methylene blue by a heterogeneous Fenton-like reaction. RSC Adv 5:72423–72432

    Article  Google Scholar 

  55. Rusevova K, Kopinke FD, Georgi A (2012) Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-influence of Fe(II)/Fe(III) ratio on catalytic performance. J Hazard Mater 241:433–440

    Article  PubMed  Google Scholar 

  56. Velichkova F, Julcour-Lebigue C, Koumanova B, Delmas H (2013) Heterogeneous Fenton oxidation of paracetamol using iron oxide (nano)particles. J Env Chem Eng 1:1214–1222

    Article  CAS  Google Scholar 

  57. Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37:1150–1158

    Article  CAS  PubMed  Google Scholar 

  58. Chen Q, Wu P, Li Y, Zhu N, Dang Z (2009) Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. J Hazard Mater 168:901–908

    Article  CAS  PubMed  Google Scholar 

  59. Xu H, Wang Y, Shi T, Zhao H, Tan Q, Zhao B, He X, Qi S (2018) Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism. Front Mater Sci 12:34–44

    Article  Google Scholar 

  60. Yip ACK, Lam FLY, Hu X (2005) Chemical-vapor-deposited copper on acid-activated bentonite clay as an applicable heterogeneous catalyst for the photo-Fenton-like oxidation of textile organic pollutants. Ind Eng Chem Res 44:7983–7990

    Article  CAS  Google Scholar 

  61. Abdessalem O, Ahmed W, Mourad B (2016) Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: Equilibrium, kinetic and thermodynamic studies. Arab J Chem 9:1729-S1739

    Article  Google Scholar 

  62. Filipa V, Henri D, Carine J (2017) Heterogeneous Fenton and photo-Fenton oxidation for paracetamol removal using iron containing ZSM-5 zeolite as catalyst. AICHE J 63:669–679

    Article  Google Scholar 

  63. Daniela AN, Andrea MB, Mariana RC, María PJ, Fernando SGE (2013) Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)- and Fe(III)-based systems. Chem Eng J 228:1148–1157

    Article  Google Scholar 

  64. Burlica R, Kirkpatrick J, Finney WC, Clark RJ, Locke BR (2004) Organic dye removal from aqueous solution by glidarc discharges. J Electrostat 62:309–321

    Article  CAS  Google Scholar 

  65. Hinda L, Eric P, Ammar H, Mohamed K, Elimame E, Chantal G, Jean-Marie H (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B-Environ 39:75–90

    Article  Google Scholar 

  66. Idrissi M, Miyah Y, Lahrich A, Chaouch M, Zerrouq F (2007) Preparation and characterisation a catalytic system Cu-clay for catalytic oxidation of methyl orange with H2O2. Int J Innov Res Sci Eng Technol 3:17359–17369

    Google Scholar 

  67. Bradu C, Frunza L, Mihalche N, Avramescu SM, Neat M, Udrea I (2010) Removal of reactive black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3. Appl Catal B 96:548–556

    Article  CAS  Google Scholar 

  68. Huihui W, Lili Z, Chun H, Xiangke W, Lai L, Guodong S (2018) Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions. Chem Eng J 332:572–581

    Article  Google Scholar 

  69. Yuting Z, Cao L, Bingbing X, Fei Q, Wei C (2016) Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: Combination of adsorption and catalysis oxidation. Appl Catal B-Environ 199:447–457

    Article  Google Scholar 

  70. Jian-Nan Z, Xiao-Qin Z, Fang-Fang C, Peng L, Fei W, Ya-Wen X, Wei-Wei X (2019) Preparing copper doped carbon nitride from melamine templated crystalline copper chloride for Fenton-like catalysis. Appl Catal B-Environ 256:117830

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the technicians responsible for analytical instrumentation, XRD, FTIR, XPS, SEM-EDS and AAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessalem Omri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, A., Benzina, M. Degradation of Alizarin Red S by Heterogeneous Fenton-Like Oxidation Over Copper-Containing Sand Catalysts. Catal Surv Asia 25, 76–92 (2021). https://doi.org/10.1007/s10563-020-09321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09321-5

Keywords

Navigation