Skip to main content
Log in

Fe3O4@HcdMeen-Pd(0) Organic–Inorganic Hybrid: As a Novel Heterogeneous Nanocatalyst for Chemo and Homoselective Heck C–C Cross-Coupling Synthesis of Butyl Cinnamates

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Methyl-2-(1-methyl-2′-amino-ethane)amino-1-cyclopentenedithiocarbo-xylate was supported on the modified Fe3O4 MNPs. Afterwards, Pd(OAc)2 was immobilized on the modified MNPs and, then, the nanoparticles were analyzed using FT-IR, XRD, EDS, ICP-OSE, SEM, TGA and VSM spectroscopy. The catalytic efficiency of the prepared heterogeneous Pd-NPs was successfully examined in “Heck cross coupling reaction”, involving the reaction of butyl acrylate with various aryl halides in water. The advantages of this strategy include, easy recovery and efficient reusability of the expensive Pd-NPs, obtaining high yields of the butyl cinnamate cross-coupled products, short reaction times, and being performed in water for a wide range of substrates.

Graphical Abstract

A novel HcdMeen-Pd(0) complex was synthesized on the surface of modified Fe3O4 MNPs and fully characterized by FT-IR, XRD, EDS, ICP-OSE, SEM, TGA and VSM spectroscopy analysis. The obtained complex was then used for Chemo And Homoselective Heck C–C cross-coupling synthesis of butyl cinnamates with in water as green solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 nobel prize. Angew Chem Int Ed 51:5062–5085. https://doi.org/10.1002/anie.201107017

    Article  CAS  Google Scholar 

  2. Huang WK, Chen WT, Hsu IJ et al (2017) Cross C–S coupling reaction catalyzed by copper(i) N-heterocyclic carbene complexes. RSC Adv 7:4912–4920. https://doi.org/10.1039/c6ra27757h

    Article  CAS  Google Scholar 

  3. Kumbhar A (2017) Palladium catalyst supported on zeolite for cross-coupling reactions: an overview of recent advances. Top Curr Chem. https://doi.org/10.1007/s41061-016-0084-5

    Article  Google Scholar 

  4. Luh TY, Leung MK, Wong KT (2000) Transition metal-catalyzed activation of aliphatic C-X bonds in carbon-carbon bond formation. Chem Rev 100:3187–3204. https://doi.org/10.1021/cr990272o

    Article  CAS  PubMed  Google Scholar 

  5. Kooti M, Afshari M (2012) Molybdenum Schiff base complex covalently anchored to silica-coated cobalt ferrite nanoparticles as a novel heterogeneous catalyst for the oxidation of alkenes. Catal Lett 142:319–325. https://doi.org/10.1007/s10562-012-0770-z

    Article  CAS  Google Scholar 

  6. Esmaeilpour M, Zahmatkesh S (2019) Palladium nanoparticles immobilized on EDTA-modified Fe3O4 @SiO2: a highly stable and efficient magnetically recoverable catalyst for the Heck-Mizoroki coupling reactions. Inorg Nano-Metal Chem 49:267–276. https://doi.org/10.1080/24701556.2019.1661445

    Article  CAS  Google Scholar 

  7. Vibhute SP, Mhaldar PM, Shejwal RV et al (2020) Palladium schiff base complex immobilized on magnetic nanoparticles: an efficient and recyclable catalyst for Mizoroki and Matsuda-Heck coupling. Tetrahedron Lett 61:151801. https://doi.org/10.1016/j.tetlet.2020.151801

    Article  CAS  Google Scholar 

  8. Christoffel F, Ward TR (2018) Palladium-catalyzed heck cross-coupling reactions in water: a comprehensive review. Catal Lett 148:489–511. https://doi.org/10.1007/s10562-017-2285-0

    Article  CAS  Google Scholar 

  9. Torborg C, Beller M (2009) Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv Synth Catal 351:3027–3043. https://doi.org/10.1002/adsc.200900587

    Article  CAS  Google Scholar 

  10. Biajoli AFP, Schwalm CS, Limberger J et al (2014) Recent progress in the use of Pd-catalyzed C–C cross-coupling reactions in the synthesis of pharmaceutical compounds. J Braz Chem Soc 25:2186–2214. https://doi.org/10.5935/0103-5053.20140255

    Article  CAS  Google Scholar 

  11. Le Bras J, Muzart J (2011) Intermolecular dehydrogenative heck reactions. Chem Rev 111:1170–1214. https://doi.org/10.1021/cr100209d

    Article  CAS  PubMed  Google Scholar 

  12. Heravi MM, Moradi R, Malmir M (2018) Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds: an update. Curr Org Chem 22:165–198. https://doi.org/10.2174/1385272821666171002121126

    Article  CAS  Google Scholar 

  13. Heravi MM, Hashemi E, Ghobadi N, (2013) Development of recent total syntheses based on the Heck reaction. Curr Org Chem 17:2192–2224

    Article  CAS  Google Scholar 

  14. Narasimhan B, Belsare D, Pharande D et al (2004) Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 39:827–834. https://doi.org/10.1016/j.ejmech.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  15. Lee K-H, Mar E-C, Okamoto M, Hall IH (1978) Antitumor agents. 32. Synthesis and antitumor activity of cyclopentenone derivatives related to helenalin. J Med Chem 21:819–822. https://doi.org/10.1021/jm00206a021

    Article  CAS  PubMed  Google Scholar 

  16. Kumar S, Singh BK, Arya P et al (2011) Novel natural product-based cinnamates and their thio and thiono analogs as potent inhibitors of cell adhesion molecules on human endothelial cells. Eur J Med Chem 46:5498–5511. https://doi.org/10.1016/j.ejmech.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  17. Narasimhan B, Ansari AM, Singh N et al (2006) A QSAR approach for the prediction of stability of benzoglycolamide ester prodrugs. Chem Pharm Bull (Tokyo) 54:1067–1071. https://doi.org/10.1248/cpb.54.1067

    Article  CAS  Google Scholar 

  18. Silarska E, Trzeciak AM (2015) Oxygen-promoted coupling of arylboronic acids with olefins catalyzed by [CA]2[PdX4] complexes without a base. J Mol Catal A 408:1–11. https://doi.org/10.1016/j.molcata.2015.07.003

    Article  CAS  Google Scholar 

  19. Gaikwad DS, Undale KA, Patil DB et al (2017) In-situ-generated palladium nanoparticles in novel ionic liquid: an efficient catalytic system for Heck-Matsuda coupling. Res Chem Intermed 43:4445–4458. https://doi.org/10.1007/s11164-017-2888-5

    Article  CAS  Google Scholar 

  20. Maffei M, Giacoia G, Mancuso R et al (2017) A highly efficient Pd/CuI-catalyzed oxidative alkoxycarbonylation of α-olefins to unsaturated esters. J Mol Catal A 426:435–443. https://doi.org/10.1016/j.molcata.2016.07.011

    Article  CAS  Google Scholar 

  21. Dawar P, Raju MB, Ramakrishna RA (2014) One-pot esterification and amide formation via acid-catalyzed dehydration and Ritter reactions. Synth Commun 44:836–846. https://doi.org/10.1080/00397911.2013.837485

    Article  CAS  Google Scholar 

  22. Carmichael AJ, Earle MJ, Holbrey JD et al (1999) The heck reaction in ionic liquids: a multiphasic catalyst system. Org Lett 1:997–1000. https://doi.org/10.1021/ol9907771

    Article  CAS  Google Scholar 

  23. Mino T, Shibuya M, Suzuki S et al (2012) Palladium-catalyzed Mizoroki-Heck type reaction with aryl trialkoxysilanes using hydrazone ligands. Tetrahedron 68:429–432. https://doi.org/10.1016/j.tet.2011.11.027

    Article  CAS  Google Scholar 

  24. Zhang L, Zhou M, Wang A, Zhang T (2019) Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00230

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang X, Hu J, Wu M et al (2018) Catalyst-free chemoselective conjugate addition and reduction of α, β-unsaturated carbonyl compounds: via a controllable boration/protodeboronation cascade pathway. Green Chem 20:255–260. https://doi.org/10.1039/c7gc02863f

    Article  CAS  Google Scholar 

  26. Luo ZG, Xu F, Fang YY et al (2016) Cu(NO3)2-catalyzed nitrodecarboxylation of α, β-unsaturated acids: facile synthesis of (E)-nitroolefins under additive-free conditions. Res Chem Intermed 42:6079–6087

    Article  CAS  Google Scholar 

  27. Dounay AB, Overman LE (2003) The asymmetric intramolecular heck reaction in natural product total synthesis. Chem Rev 103:2945–2963. https://doi.org/10.1021/cr020039h

    Article  CAS  PubMed  Google Scholar 

  28. Motevalizadeh SF, Alipour M, Ashori F et al (2018) Heck and oxidative boron Heck reactions employing Pd(II) supported amphiphilized polyethyleneimine-functionalized MCM-41 (MCM-41@aPEI-Pd) as an efficient and recyclable nanocatalyst. Appl Organomet Chem. https://doi.org/10.1002/aoc.4123

    Article  Google Scholar 

  29. Ashiri S, Mehdipour E (2018) Synthesis and structural characterization for novel mixed-donor ligand palladium (II) based on graphene and oxime: its application as a highly stable and efficient recyclable catalyst. J Iran Chem Soc 15:2383–2393. https://doi.org/10.1007/s13738-018-1427-7

    Article  CAS  Google Scholar 

  30. Azaroon M, Kiasat AR (2018) An efficient and new protocol for the Heck reaction using palladium nanoparticle-engineered dibenzo-18-crown-6-ether/MCM-41 nanocomposite in water. Appl Organomet Chem. https://doi.org/10.1002/aoc.4271

    Article  Google Scholar 

  31. Wilson M, Kore R, Fraser RC et al (2017) Recyclable palladium catalyst cloths for carbon-carbon coupling reactions. Colloids Surf A 520:788–795. https://doi.org/10.1016/j.colsurfa.2017.01.050

    Article  CAS  Google Scholar 

  32. Kilinçarslan R, Günay ME, Firinci R et al (2016) New palladium(II)-N-heterocyclic carbene complexes containing benzimidazole-2-ylidene ligand derived from menthol: synthesis, characterization and catalytic activities. Appl Organomet Chem 30:268–272. https://doi.org/10.1002/aoc.3427

    Article  CAS  Google Scholar 

  33. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nanocatalysts. Chem Rev 114:6949–6985. https://doi.org/10.1021/cr500134h

    Article  CAS  PubMed  Google Scholar 

  34. Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459. https://doi.org/10.1002/anie.200905684

    Article  CAS  Google Scholar 

  35. Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724. https://doi.org/10.1021/cr050954d

    Article  CAS  PubMed  Google Scholar 

  36. Maleki A (2013) One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett 54:2055–2059. https://doi.org/10.1016/j.tetlet.2013.01.123

    Article  CAS  Google Scholar 

  37. Maleki A (2012) Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron 68:7827–7833. https://doi.org/10.1016/j.tet.2012.07.034

    Article  CAS  Google Scholar 

  38. Rezapour E, Jafarpour M, Rezaeifard A (2018) Palladium niacin complex immobilized on starch-coated maghemite nanoparticles as an efficient homo- and cross-coupling catalyst for the synthesis of symmetrical and unsymmetrical biaryls. Catal Lett 148:3165–3177. https://doi.org/10.1007/s10562-018-2513-2

    Article  CAS  Google Scholar 

  39. Shabbir S, Hong M, Rhee H (2017) Resin-supported palladium nanoparticles as recyclable catalyst for the hydrodechlorination of chloroarenes and polychlorinated biphenyls. Appl Organomet Chem. https://doi.org/10.1002/aoc.3552

    Article  Google Scholar 

  40. Pahlevanneshan Z, Moghadam M, Mirkhani V et al (2015) Immobilization of palladium(II)-containing bis(imidazolium) ligand on ion-exchange resins: efficient and reusable catalysts for C–C coupling reactions. Appl Organomet Chem 29:346–352. https://doi.org/10.1002/aoc.3297

    Article  CAS  Google Scholar 

  41. Shokouhimehr M, Hong K, Lee TH et al (2018) Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chem 20:3809–3817. https://doi.org/10.1039/c8gc01240g

    Article  CAS  Google Scholar 

  42. Maleki A, Movahed H, Ravaghi P (2017) Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohydr Polym 156:259–267. https://doi.org/10.1016/j.carbpol.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  43. Maleki A, Rabbani M, Shahrokh S (2015) Preparation and characterization of a silica-based magnetic nanocomposite and its application as a recoverable catalyst for the one-pot multicomponent synthesis of quinazolinone derivatives. Appl Organomet Chem 29:809–814. https://doi.org/10.1002/aoc.3373

    Article  CAS  Google Scholar 

  44. Targhan H, Hassanpour A, Sohrabnezhad S, Bahrami K (2019) Palladium nanoparticles immobilized with polymer containing nitrogen-based ligand: a highly efficient catalyst for Suzuki-Miyaura and Mizoroki-heck coupling reactions. Catal Lett. https://doi.org/10.1007/s10562-019-02981-7

    Article  Google Scholar 

  45. Zhang Z, Zhang Y, Liu X et al (2018) Assembly immobilized palladium(0) on carboxymethylcellulose/Fe3O4 hybrid: an efficient tailor-made magnetically catalyst for the Suzuki-Miyaura couplings. Appl Organomet Chem. https://doi.org/10.1002/aoc.3912

    Article  Google Scholar 

  46. Baran T (2019) Production and application of highly efficient and reusable palladium nanocatalyst decorated on the magnetically retrievable chitosan/activated carbon composite microcapsules. Catal Lett. https://doi.org/10.1007/s10562-019-02739-1

    Article  Google Scholar 

  47. Phukan S, Mahanta A, Kakati D, Rashid MH (2019) Green chemical synthesis of Pd nanoparticles for use as efficient catalyst in Suzuki-Miyaura cross-coupling reaction. Appl Organomet Chem 33:e4758. https://doi.org/10.1002/aoc.4758

    Article  CAS  Google Scholar 

  48. Feizi Mohazzab B, Jaleh B, Issaabadi Z et al (2019) Stainless steel mesh-GO/Pd NPs: catalytic applications of Suzuki-Miyaura and Stille coupling reactions in eco-friendly media. Green Chem 21:3319–3327. https://doi.org/10.1039/c9gc00889f

    Article  CAS  Google Scholar 

  49. Maleki A (2018) Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason Sonochem 40:460–464. https://doi.org/10.1016/j.ultsonch.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  50. Rahimi J, Maleki A (2020) Preparation of a trihydrazinotriazine-functionalized core-shell nanocatalyst as an extremely efficient catalyst for the synthesis of benzoxanthenes. Mater Today Chem 18:100362. https://doi.org/10.1016/j.mtchem.2020.100362

    Article  CAS  Google Scholar 

  51. Esmaeili MS, Varzi Z, Taheri-Ledari R, Maleki A (2020) Preparation and study of the catalytic application in the synthesis of xanthenedione pharmaceuticals of a hybrid nano-system based on copper, zinc and iron nanoparticles. Res Chem Intermed. https://doi.org/10.1007/s11164-020-04311-8

    Article  Google Scholar 

  52. Maleki A, Akhlaghi E, Paydar R (2016) Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl Organomet Chem 30:382–386. https://doi.org/10.1002/aoc.3443

    Article  CAS  Google Scholar 

  53. Bahrami S, Hassanzadeh-Afruzi F, Maleki A (2020) Synthesis and characterization of a novel and green rod-like magnetic ZnS/CuFe2O4 /agar organometallic hybrid catalyst for the synthesis of biologically-active 2-amino-tetrahydro-4 H -chromene-3-carbonitrile derivatives. Appl Organomet Chem 34:e5949. https://doi.org/10.1002/aoc.5949

    Article  CAS  Google Scholar 

  54. Esmaeili MS, Varzi Z, Eivazzadeh-Keihan R et al (2020) Design and development of natural and biocompatible raffinose-Cu2O magnetic nanoparticles as a heterogeneous nanocatalyst for the selective oxidation of alcohols. Mol Catal 492:111037. https://doi.org/10.1016/j.mcat.2020.111037

    Article  CAS  Google Scholar 

  55. Maleki A, Ghalavand R, Firouzi Haji R (2018) Synthesis and characterization of the novel diamine-functionalized Fe3O4 @SiO2 nanocatalyst and its application for one-pot three-component synthesis of chromenes. Appl Organomet Chem 32:e3916. https://doi.org/10.1002/aoc.3916

    Article  CAS  Google Scholar 

  56. Deplanche K, Woods RD, Mikheenko IP et al (2008) Manufacture of stable palladium and gold nanoparticles on native and genetically engineered flagella scaffolds. Biotechnol Bioeng 101:873–880. https://doi.org/10.1002/bit.21966

    Article  CAS  PubMed  Google Scholar 

  57. Maleki A, Hamidi N, Maleki S, Rahimi J (2018) Surface modified SPIONs-Cr(VI) ions-immobilized organic-inorganic hybrid as a magnetically recyclable nanocatalyst for rapid synthesis of polyhydroquinolines under solvent-free conditions at room temperature. Appl Organomet Chem 32:e4245. https://doi.org/10.1002/aoc.4245

    Article  CAS  Google Scholar 

  58. Nuri A, Mansoori Y, Bezaatpour A (2019) N-heterocyclic carbene–palladium(II) complex supported on magnetic mesoporous silica for Heck cross-coupling reaction. Appl Organomet Chem. https://doi.org/10.1002/aoc.4904

    Article  Google Scholar 

  59. Deutschmann O, Knözinger H, Kochloefl K, Turek T (2009) Heterogeneous catalysis and solid catalysts. In: Ann R (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  60. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393. https://doi.org/10.1039/c3cs35480f

    Article  CAS  PubMed  Google Scholar 

  61. Mousavi S, Mansoori Y, Nuri A et al (2020) A new nitrogen Pd(II) complex immobilized on magnetic mesoporous silica: a retrievable catalyst for C–C bond formation. Catal Lett. https://doi.org/10.1007/s10562-020-03458-8

    Article  Google Scholar 

  62. Maleki A, Azadegan S, Rahimi J (2019) Gallic acid grafted to amine-functionalized magnetic nanoparticles as a proficient catalyst for environmentally friendly synthesis of α-aminonitriles. Appl Organomet Chem 33:e4810. https://doi.org/10.1002/aoc.4810

    Article  CAS  Google Scholar 

  63. Maleki A, Kari T (2018) Novel leaking-free, green, double core/shell, palladium-loaded magnetic heterogeneous nanocatalyst for selective aerobic oxidation. Catal Lett 148:2929–2934. https://doi.org/10.1007/s10562-018-2492-3

    Article  CAS  Google Scholar 

  64. Maleki A, Hassanzadeh-Afruzi F, Varzi Z, Esmaeili MS (2020) Magnetic dextrin nanobiomaterial: an organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction. Mater Sci Eng C 109:110502. https://doi.org/10.1016/j.msec.2019.110502

    Article  CAS  Google Scholar 

  65. Taheri-Ledari R, Maleki A, Zolfaghari E et al (2020) High-performance sono/nano-catalytic system: Fe3O4@Pd/CaCO3-DTT core/shell nanostructures, a suitable alternative for traditional reducing agents for antibodies. Ultrason Sonochem 61:104824. https://doi.org/10.1016/j.ultsonch.2019.104824

    Article  CAS  PubMed  Google Scholar 

  66. Maleki A, Taheri-Ledari R, Ghalavand R (2020) Design and fabrication of a magnetite-based polymer-supported hybrid nanocomposite: a promising heterogeneous catalytic system utilized in known palladium-assisted coupling reactions. Comb Chem High Throughput Screen 23:119–125. https://doi.org/10.2174/1386207323666200128152136

    Article  CAS  PubMed  Google Scholar 

  67. Singh G, Sanchita RS et al (2018) Coumarin–derived organosilatranes: functionalization at magnetic silica surface and selective recognition of Hg2+ ion. Sens Actuators B 266:861–872. https://doi.org/10.1016/j.snb.2018.03.036

    Article  CAS  Google Scholar 

  68. Hasani A, Do HH, Tekalgne M et al (2020) Recent progress of two-dimensional materials and metal–organic framework-based taste sensors. J Korean Ceram Soc 57:353–367. https://doi.org/10.1007/s43207-020-00047-8

    Article  CAS  Google Scholar 

  69. Akhavan M, Foroughifar N, Pasdar H et al (2017) Copper(II)-complex functionalized magnetite nanoparticles: a highly efficient heterogeneous nanocatalyst for the synthesis of 5-arylidenthiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-one. Transit Met Chem 42:543–552. https://doi.org/10.1007/s11243-017-0159-3

    Article  CAS  Google Scholar 

  70. Neysi M, Zarnegaryan A, Elhamifar D (2019) Core-shell structured magnetic silica supported propylamine/molybdate complexes: an efficient and magnetically recoverable nanocatalyst. New J Chem 43:12283–12291. https://doi.org/10.1039/c9nj01160a

    Article  CAS  Google Scholar 

  71. Eivazzadeh-Keihan R, Taheri-Ledari R, Khosropour N et al (2020) Fe3O4/GO@melamine-ZnO nanocomposite: a promising versatile tool for organic catalysis and electrical capacitance. Colloids Surf A 587:124335. https://doi.org/10.1016/j.colsurfa.2019.124335

    Article  CAS  Google Scholar 

  72. Hajizadeh Z, Valadi K, Taheri-Ledari R, Maleki A (2020) Convenient Cr(VI) removal from aqueous samples: executed by a promising clay-based catalytic system, magnetized by Fe3O4 nanoparticles and functionalized with humic acid. ChemistrySelect 5:2441–2448. https://doi.org/10.1002/slct.201904672

    Article  CAS  Google Scholar 

  73. Trzeciak AM, Augustyniak AW (2019) The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord Chem Rev 384:1–20. https://doi.org/10.1016/j.ccr.2019.01.008

    Article  CAS  Google Scholar 

  74. Paul P, Butcher RJ, Bhattacharya S (2015) Palladium complexes of 2-formylpyridine thiosemicarbazone and two related ligands: Synthesis, structure and spectral and catalytic properties. Inorg Chim Acta 425:67–75. https://doi.org/10.1016/j.ica.2014.10.010

    Article  CAS  Google Scholar 

  75. Sherwood J, Clark JH, Fairlamb IJS, Slattery JM (2019) Solvent effects in palladium catalysed cross-coupling reactions. Green Chem 21:2164–2213. https://doi.org/10.1039/c9gc00617f

    Article  CAS  Google Scholar 

  76. Xu S, Kim EH, Wei A, Negishi EI (2014) Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Sci Technol Adv Mater 15:44201. https://doi.org/10.1088/1468-6996/15/4/044201

    Article  CAS  Google Scholar 

  77. Hajipour AR, Tavangar-Rizi Z (2017) Straightforward and recyclable system for synthesis of Biaryl Ketones via carbonylative coupling reactions of aryl halides with PhB(OH)2 and (EtO)3PhSi. ChemistrySelect 2:8990–8999. https://doi.org/10.1002/slct.201701009

    Article  CAS  Google Scholar 

  78. Heravi MM, Mohammadkhani L (2018) Recent applications of Stille reaction in total synthesis of natural products: an update. J Organomet Chem 869:106–200. https://doi.org/10.1016/j.jorganchem.2018.05.018

    Article  CAS  Google Scholar 

  79. Ganesh Babu S, Emayavaramban B, Jerome P, Karvembu R (2017) Pd/AlO(OH): a heterogeneous, stable and recyclable catalyst for N-arylation of aniline under ligand-free aerobic condition. Catal Lett 147:2619–2629. https://doi.org/10.1007/s10562-017-2163-9

    Article  CAS  Google Scholar 

  80. Zhou A, Guo RM, Zhou J et al (2018) Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain Chem Eng 6:2103–2111. https://doi.org/10.1021/acssuschemeng.7b03525

    Article  CAS  Google Scholar 

  81. Maleki A, Taheri-Ledari R, Ghalavand R, Firouzi-Haji R (2020) Palladium-decorated o-phenylenediamine-functionalized Fe3O4/SiO2 magnetic nanoparticles: a promising solid-state catalytic system used for Suzuki-Miyaura coupling reactions. J Phys Chem Solids 136:109200. https://doi.org/10.1016/j.jpcs.2019.109200

    Article  CAS  Google Scholar 

  82. Biffis A, Centomo P, Del Zotto A, Zecca M (2018) Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem Rev 118:2249–2295. https://doi.org/10.1021/acs.chemrev.7b00443

    Article  CAS  PubMed  Google Scholar 

  83. Bates R (2012) Organic synthesis using transition metals. Wiley, Chichester

    Book  Google Scholar 

  84. Unak P, Tekin V, Guldu OK, Aras O (2020) 89Zr labeled Fe3O4@TiO2 nanoparticles: in vitro afffinities with breast and prostate cancer cells. Appl Organomet Chem 34:e5616. https://doi.org/10.1002/aoc.5616

    Article  CAS  Google Scholar 

  85. Rostami A, Atashkar B, Gholami H (2013) Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst. Catal Commun 37:69–74. https://doi.org/10.1016/j.catcom.2013.03.022

    Article  CAS  Google Scholar 

  86. Asadi M, Mohammadi K, Esmaielzadeh S et al (2009) Some new Schiff base ligands giving a NNOS coordination sphere and their nickel(II) complexes: synthesis, characterization and complex formation. Polyhedron 28:1409–1418. https://doi.org/10.1016/j.poly.2009.03.018

    Article  CAS  Google Scholar 

  87. Wang S, Xin H, Qian Y (1997) Preparation of nanocrystalline Fe3O4 by γ-ray radiation. Mater Lett 33:113–116. https://doi.org/10.1016/S0167-577X(97)00077-3

    Article  Google Scholar 

  88. Ma M, Yang Y, Liao D et al (2019) Synthesis, characterization and catalytic performance of core-shell structure magnetic Fe3O4/P(GMA-EGDMA)-NH2/HPG-COOH-Pd catalyst. Appl Organomet Chem 33:e4708. https://doi.org/10.1002/aoc.4708

    Article  CAS  Google Scholar 

  89. Maleki B, Reiser O, Esmaeilnezhad E, Choi HJ (2019) SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@D–NH–(CH2)4–SO3H): synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron 162:129–141. https://doi.org/10.1016/j.poly.2019.01.055

    Article  CAS  Google Scholar 

  90. Moradi L, Tadayon M (2018) Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation. J Saudi Chem Soc 22:66–75. https://doi.org/10.1016/j.jscs.2017.07.004

    Article  CAS  Google Scholar 

  91. Ahmadi A, Sedaghat T, Azadi R, Motamedi H (2020) Magnetic mesoporous silica nanocomposite functionalized with palladium Schiff base complex: synthesis, characterization, catalytic efficacy in the Suzuki-Miyaura reaction and α-amylase immobilization. Catal Lett 150:112–126. https://doi.org/10.1007/s10562-019-02913-5

    Article  CAS  Google Scholar 

  92. Du Z, Zhou W, Bai L et al (2011) In situ generation of palladium nanoparticles: reusable, ligand-free heck reaction in PEG-400 assisted by focused microwave irradiation. Synlett 2011:2905–2905. https://doi.org/10.1055/s-0031-1289897

    Article  Google Scholar 

  93. Firouzabadi H, Iranpoor N, Gholinejad M (2009) 2-Aminophenyl diphenylphosphinite as a new ligand for heterogeneous palladium-catalyzed Heck-Mizoroki reactions in water in the absence of any organic co-solvent. Tetrahedron 65:7079–7084. https://doi.org/10.1016/j.tet.2009.06.081

    Article  CAS  Google Scholar 

  94. Varela MT, Ferrarini M, Mercaldi VG et al (2020) Coumaric acid derivatives as tyrosinase inhibitors: efficacy studies through in silico, in vitro and ex vivo approaches. Bioorg Chem 103:104108. https://doi.org/10.1016/j.bioorg.2020.104108

    Article  CAS  PubMed  Google Scholar 

  95. Yuan Y-Q, Guo S-R (2012) Remarkably facile heck reactions in aqueous two-phase system catalyzed by reusable Pd/C under ligand-free conditions. Synth Commun 42:1059–1069. https://doi.org/10.1080/00397911.2010.535943

    Article  CAS  Google Scholar 

  96. Mino T, Shirae Y, Sasai Y et al (2006) Phosphine-free palladium catalyzed Mizoroki−Heck reaction using hydrazone as a ligand. J Org Chem 71:6834–6839. https://doi.org/10.1021/jo0610006

    Article  CAS  PubMed  Google Scholar 

  97. Farrington EJ, Barnard CF, Rowsell E, Brown JM (2005) Ruthenium complex-catalysed heck reactions of areneboronic acids; mechanism, synthesis and halide tolerance. Adv Synth Catal 347:185–195. https://doi.org/10.1002/adsc.200404231

    Article  CAS  Google Scholar 

  98. Jadhav SN, Rode CV (2017) An efficient palladium catalyzed Mizoroki-Heck cross-coupling in water. Green Chem 19:5958–5970. https://doi.org/10.1039/C7GC02869E

    Article  CAS  Google Scholar 

  99. Rumi L, Scheuermann GM, Mülhaupt R, Bannwarth W (2011) Palladium nanoparticles on graphite oxide as catalyst for Suzuki–Miyaura, Mizoroki–Heck, and sonogashira reactions. Helv Chim Acta 94:966–976. https://doi.org/10.1002/hlca.201000412

    Article  CAS  Google Scholar 

  100. Islam MS, Nahra F, Tzouras NV et al (2019) Mizoroki-Heck cross-coupling of acrylate derivatives with aryl halides catalyzed by palladate pre-catalysts. Eur J Inorg Chem 2019:4695–4699. https://doi.org/10.1002/ejic.201901075

    Article  CAS  Google Scholar 

  101. Ichikawa T, Mizuno M, Ueda S et al (2018) A practical method for heterogeneously-catalyzed Mizoroki-Heck reaction: flow system with adjustment of microwave resonance as an energy source. Tetrahedron 74:1810–1816. https://doi.org/10.1016/j.tet.2018.02.044

    Article  CAS  Google Scholar 

  102. Kiani M, Bagherzadeh M, Meghdadi S et al (2020) Catalytic and antibacterial properties of 3-dentate carboxamide Pd/Pt complexes obtained via a benign route. Appl Organomet Chem 34:e5531. https://doi.org/10.1002/aoc.5531

    Article  CAS  Google Scholar 

  103. Sardarian AR, Eslahi H, Esmaeilpour M (2019) Green, cost-effective and efficient procedure for Heck and Sonogashira coupling reactions using palladium nanoparticles supported on functionalized Fe3O4 @SiO2 by polyvinyl alcohol as a highly active, durable and reusable catalyst. Appl Organomet Chem. https://doi.org/10.1002/aoc.4856

    Article  Google Scholar 

  104. Veisi H, Mirzaee N (2018) Ligand-free Mizoroki–Heck reaction using reusable modified graphene oxide-supported Pd(0) nanoparticles. Appl Organomet Chem 32:e4067. https://doi.org/10.1002/aoc.4067

    Article  CAS  Google Scholar 

  105. Fakhri A, Naghipour A (2018) Organometallic polymer-functionalized Fe3O4 nanoparticles as a highly efficient and eco-friendly nanocatalyst for C–C bond formation. Transit Met Chem 43:463–472. https://doi.org/10.1007/s11243-018-0233-5

    Article  CAS  Google Scholar 

  106. Liang L, Nie L, Jiang M et al (2018) Palladium immobilized on in situ cross-linked chitosan superfine fibers for catalytic application in an aqueous medium. New J Chem 42:11023–11030. https://doi.org/10.1039/C8NJ02183J

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Li or Dangquan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Liu, Z., Li, C. et al. Fe3O4@HcdMeen-Pd(0) Organic–Inorganic Hybrid: As a Novel Heterogeneous Nanocatalyst for Chemo and Homoselective Heck C–C Cross-Coupling Synthesis of Butyl Cinnamates. Catal Lett 151, 2207–2222 (2021). https://doi.org/10.1007/s10562-020-03509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03509-0

Keywords

Navigation