Skip to main content
Log in

Effects of the Support-Crystal Size on the Catalytic Performance of RuO2/TiO2 in the Deacon Process

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

RuO2/TiO2 catalysts with different TiO2 crystal sizes were prepared via a dry impregnation method, and these prepared catalysts were applied in the oxidation of HCl. The results show that decreasing the support-crystal size is an effective method to enhance the dispersion of RuO2 on TiO2, which is helpful to increase the catalytic activity significantly.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Motupally S, Mah DT, Freire FJ, Weidner JW (1998) Electrochem Soc Interface 7:32

    CAS  Google Scholar 

  2. Pérez-Ramírez J, Mondelli C, Schmidt T, Schlüter OFK, Wolf A, Mleczko L, Dreier T (2011) Energy Environ Sci 4:4786

    Article  Google Scholar 

  3. Over H (2012) Chem Rev 112:3356

    Article  CAS  Google Scholar 

  4. Over H, Schomäcker R (2013) ACS Catal 3:1034

    Article  CAS  Google Scholar 

  5. Hibi T, Nishida H, Abekawa H (1999) US Patent 5871707.

  6. Iwanaga K, Seki K, Hibi T, Issoh K, Suzuta T, Nakada M, Mori Y, Abe T (2004) Sumitomo Kagaku 2004:1

    Google Scholar 

  7. Seki K (2010) Catal Surv Asia 14:168

    Article  CAS  Google Scholar 

  8. Mondelli C, Amrute AP, Krumeich F, Schmidt T, Pérez-Ramírez J (2011) ChemCatChem 3:657

    Article  CAS  Google Scholar 

  9. Teschner D, Farra R, Yao L, Schlögl R, Soerijanto H, Schomäcker R, Schmidt T, Szentmiklósi L, Amrute AP, Mondelli C, Pérez-Ramírez J (2012) J Catal 285:273

    Article  CAS  Google Scholar 

  10. Wang D, Huang J, Liu F, Xu X, Fang X, Liu J, Xie Y, Wang X (2020) Catal Today 339:220

    Article  CAS  Google Scholar 

  11. Gu Q, Gao Z, Yu S, Xue C (2016) Adv Mater Interfaces 3:1500631

    Article  Google Scholar 

  12. Wang J, Liu X, Zeng J, Zhu T (2016) Catal Commun 76:13

    Article  CAS  Google Scholar 

  13. Li H, Zha S, Zhao Z-J, Tian H, Chen S, Gong Z, Cai W, Wang Y, Cui Y, Zeng L, Mu R, Gong J (2018) ACS Catal 8:5526

    Article  CAS  Google Scholar 

  14. Nagaoka K, Eboshi T, Takeishi Y, Tasaki R, Honda K, Imamura K, Sato K (2017) Sci Adv 3:e1602747

    Article  Google Scholar 

  15. Zarei M, Davarpanah A, Mokhtarian N, Farahbod F (2020) Energy Sources Part A 42:89

    Article  CAS  Google Scholar 

  16. Hevia MAG, Amrute AP, Schmidt T, Pérez-Ramírez J (2010) J Catal 276:141

    Article  CAS  Google Scholar 

  17. Zweidinger S, Crihan D, Knapp M, Hofmann JP, Seitsonen AP, Weststrate CJ, Lundgren E, Andersen JN, Over H (2008) J Phys Chem C 112:9966

    Article  CAS  Google Scholar 

  18. Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate CJ, Andersen JN, Seitsonen AP, Over H (2008) Angew Chem Int Ed 47:2131

    Article  CAS  Google Scholar 

  19. Amrute AP, Mondelli C, Schmidt T, Hauert R, Pérez-Ramírez J (2013) ChemCatChem 5:748

    Article  CAS  Google Scholar 

  20. Xiang G, Shi X, Wu Y, Zhuang J, Wang X (2012) Sci Rep 2:801

    Article  Google Scholar 

  21. Kondratenko EV, Amrute AP, Pohl M-M, Steinfeldt N, Mondelli C, Pérez-Ramírez J (2013) Catal Sci Technol 3:2555

    Article  CAS  Google Scholar 

  22. Zhang Q, Li R, Li Z, Li A, Wang S, Liang Z, Liao S, Li C (2016) J Catal 337:36

    Article  CAS  Google Scholar 

  23. Nguyen-Phan T-D, Luo S, Vovchok D, Llorca J, Sallis S, Kattel S, Xu W, Piper LFJ, Polyansky DE, Senanayake SD, Stacchiola DJ, Rodriguez JA (2016) Phys Chem Chem Phys 18:15972

    Article  CAS  Google Scholar 

  24. Balachadran U, Eror NG (1982) J Solid State Chem 42:276

    Article  Google Scholar 

  25. Shi J, Hui F, Yuan J, Yu Q, Mei S, Zhang Q, Li J, Wang W, Yang J, Lu J (2019) Catalysts 9:108

    Article  Google Scholar 

  26. Rochefort D, Dabo P, Guay D, Sherwood PMA (2003) Electrochim Acta 48:4245

    Article  CAS  Google Scholar 

  27. Zhao J, Xi W, Tu C, Dai Q, Wang X (2020) Appl Catal B 263:118237

    Article  CAS  Google Scholar 

  28. Madon RJ, O’Connell JP, Boudart M (1978) AIChE J 24:904

    Article  CAS  Google Scholar 

  29. Gonzo EE, Boudart M (1978) J Catal 52:462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Zhejiang Provincial Key R&D Project (2019C03118) and Zhejiang Provincial Natural Science Foundation (Q20B030021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinqing Lu or Weidong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (PDF 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, Y., Xu, C. et al. Effects of the Support-Crystal Size on the Catalytic Performance of RuO2/TiO2 in the Deacon Process. Catal Lett 151, 2346–2354 (2021). https://doi.org/10.1007/s10562-020-03493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03493-5

Keywords

Navigation