Skip to main content
Log in

On a strong maximum principle for fully nonlinear subelliptic equations with Hörmander condition

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate a strong maximum principle of Vázquez type for viscosity solutions of fully nonlinear and degenerate elliptic equations involving Hörmander vector fields. We also give a strong comparison principle for such equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Du denotes the gradient of u relative to the standard canonical frame \(\{\frac{\partial }{\partial x_1},\cdots ,\frac{\partial }{\partial x_N}\}\) of \(\mathbb {R}^N\).

References

  1. Bieske, T.: On \(\infty \)-harmonic functions on the Heisenberg group. Comm. Partial Differential Equations 27(3–4), 727–761 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bardi, M., Da Lio, F.: Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. I. convex operators. Nonlinear Anal. Ser. A: Theory Methods 44(8), 991–1006 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bardi, M., Da Lio, F.: Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. II. concave operators. Indiana Univ. Math. J. 52(3), 607–627 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bardi, M., Goffi, A.: New strong maximum and comparison principles for fully nonlinear degenerate elliptic PDEs. Calc. Var. Partial Differential Equations 58(6), 184 (2019)

    Article  MathSciNet  Google Scholar 

  5. Battaglia, E., Biagi, S., Bonfiglioli, A.: The strong maximum principle and the Harnack inequality for a class of hypoelliptic non-Hörmander operators. Ann. Inst. Fourier (Grenoble) 66(2), 589–631 (2016)

    Article  MathSciNet  Google Scholar 

  6. Beatrous, F.H., Bieske, T.J., Manfredi, J.J.: The maximum principle for vector fields the p-harmonic equation and recent advances in analysis. Contemp. Math. Amer. Math. Soc, Providence RI (2005)

    MATH  Google Scholar 

  7. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified lie groups and potential theory for their sub-laplacians. Springer, New York (2007)

    MATH  Google Scholar 

  8. Bony, J-M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. (French) Ann. Inst. Fourier (Grenoble) 19 1969 fasc. 1, 277–304 xii

  9. Caffarelli, L.A., Cabré, X.: Fully Nonlinear elliptic Equations Colloquium publications 43. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  10. Capogna, L., Zhou, X.: Strong comparison principle for p-harmonic functions in Carnot-Caratheodory spaces. Proc. Amer. Math. Soc. 146(10), 4265–4274 (2018)

    Article  MathSciNet  Google Scholar 

  11. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. AMS. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  12. Felmer, P., Montenegro, M., Quaas, A.: A note on the strong maximum principle and the compact support principle. J. Differential Equations 246(1), 39–49 (2009)

    Article  MathSciNet  Google Scholar 

  13. Manfredi, J.J.: Nonlinear subelliptic equations on Carnot groups. Notes of a course given at the third school on Analysis and Geometry in metric spaces, (2003) http://www.pitt.edu/~manfredi/papers/fullynonlsubtrentofinal.pdf

  14. Mohammed, A., Vitolo, A.: On the strong maximum principle. Complex Var. Elliptic Equ. 65(8), 1299–1314 (2020)

    Article  MathSciNet  Google Scholar 

  15. Pucci, P., Serrin, J.: The maximum principle. Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, (2007)

  16. Pucci, P., Serrin, J.: The strong maximum principle revisited. J. Differential Equations 196, 1–66 (2004)

    Article  MathSciNet  Google Scholar 

  17. Pucci, P., Serrin, J.: A note on the strong maximum principle for elliptic differential inequalities. J. Math. Pures Appl. 79, 57–71 (2000)

    Article  MathSciNet  Google Scholar 

  18. Pucci, P., Serrin, J., Zou, H.: A strong maximum principle and a compact support principle for singular elliptic equations. J. Math. Pures Appl. 78, 769–789 (1991)

    Article  Google Scholar 

  19. Pucci, P., Rădulescu, V.: The maximum principle with lack of monotonicity. Electron. J. Qual. Theory Differ. Equ. 58, 11 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. Equ. 12, 191–202 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for reading the manuscript carefully and for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mohammed.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let us begin by providing a proof of Remark 1.2 (ii). Let us first note that for any \( a>0,s>0\) we have

$$\begin{aligned} a\,\omega \left( \frac{s}{a}\right) =a\int _0^{s/a}\varpi (\tau )\,d\tau =\int _0^s\varpi \left( \frac{\tau }{a}\right) \,d\tau . \end{aligned}$$
(5.1)

For a fixed s, we take the limit in (5.1) as \(a\rightarrow \infty \) to get

$$\begin{aligned} \lim _{a\rightarrow \infty }a\,\omega \left( \frac{s}{a}\right) =s\,\varpi (0). \end{aligned}$$
(5.2)

Given \(t\ge 0\), assume that the function \(s\mapsto a\omega (s)+ H(as,t)\) is non-decreasing in s for all \(a\ge a_0\ge 1\). Let \(\alpha \le \beta \). Then, by assumption, we have

$$\begin{aligned}a\,\omega \left( \frac{\alpha }{a}\right) +H\left( a\left( \frac{\alpha }{a}\right) \,,\,t\right) \le a\,\omega \left( \frac{\beta }{a}\right) +H\left( a\left( \frac{\beta }{a}\right) \,,\,t\right) \end{aligned}$$

Sending \(a\rightarrow \infty \), and using the limit in (5.2) we conclude that

$$\begin{aligned}H(\beta ,t)-H(\alpha ,t )\ge (\alpha -\beta )\varpi (0).\end{aligned}$$

If \(\varpi (0)=0\), then \(H(\beta , t)\ge H(\alpha ,t).\) \(\square \)

In the remainder of this appendix we provide some examples to illustrate the conditions on F and H that were used to obtain the strong maximum and comparison principles.

For \((x,p,Y)\in \Omega \times \mathbb {R}^N\times S^{m\times m},\) we set

$$\begin{aligned}F(x,p, Y):= b_{ij}(x, p ) Y_{ij} \end{aligned}$$

where \(b:= (b_{ij} )\in S^{m\times m}\) satisfies

$$\begin{aligned} \lambda \varpi (|p|) I_m \le b(x,p) \le \Lambda \varpi (|p|) I_m,\;\;\;\;(x,p)\in \Omega \times \mathbb {R}^N. \end{aligned}$$
(5.3)

We take \(0<\lambda \le \Lambda <\infty \) and the function \(\varpi :\mathbb {R}^+_0\rightarrow \mathbb {R}^+_0\) is a non-decreasing function such that \(\varpi (t)>0\) for \(t>0\). It follows from (5.3) that F satisfies conditions (F-1) and (F-2). Thus, in this case a supersolution u of (1.7) would satisfy

$$\begin{aligned}\text {trace}\left( b(x,D_\mathcal {X}u) (D^2_{\mathcal {X}} u)^* \right)&= \frac{1}{2}b_{ij}(x, D_{\mathcal {X}} u(x)) \left[ X_i (X_j u)+X_j (X_i u) \right] \\&\le H(u, |D_{\mathcal {X}} u|)\;\;\text{ in }\;\;\Omega , \end{aligned}$$

where H satisfies (H-i) and (H-d). A specific example can be given by taking \(b(x,p)=|p|^\gamma I_m\) and \(H(s,t)=\max \{0,s\}^\alpha +t^\beta \), where \(\alpha ,\beta \) and \(\gamma \) are non-negative numbers. This leads to

$$\begin{aligned} |D_{\mathcal {X}} u|^\gamma \sum _{i=1}^m X_i^2 u\le u^{\alpha }+|D_{\mathcal {X}}u|^{\beta }\;\;\text{ in } \Omega , \end{aligned}$$
(5.4)

where \(\Omega \subseteq \mathbb {R}^N\) is a connected open subset. If \(\min (\alpha , \beta )\ge \gamma +1\) and u is a non-negative viscosity solution of (5.4), then Theorem 1.8 shows that either \(u\equiv 0\) in \(\Omega \) or \(u>0\) in \(\Omega \)

We mention here that if \(b_{ij}=b_{ij}(x)\) with \(\lambda I_m\le b\le \Lambda I_m\), and \(c_i(x)\) and d(x) are continuous and bounded, the elliptic inequality

$$\begin{aligned} b_{ij}\left[ X_i(X_j u)+X_j(X_iu ) \right] +c_i (X_iu)+d u \le 0 \end{aligned}$$
(5.5)

is also included in our work. To see this, define \(H(u, |D_{\mathcal {X}} u|)=M( u+|D_{\mathcal {X}} u|)\), where \(M\ge \max \{ \max |d|,\; \max _{1\le i\le m}|c_i | \}\). Thus, (5.5) may be written as

$$\begin{aligned}F(x, ( D^2_{\mathcal {X}} u)^*)\le H(u, |D_{\mathcal {X}} u|) \;\;\text{ in } \Omega ,\end{aligned}$$

where F satisfies (F-1) and (F-2) and H satisfies (H-i) and (H-d).

Let h be a \(C^1\) function on \(\mathbb {R}_0^+\), and set

$$\begin{aligned}\varpi (t):=h(t^2)\;\;\text {for}\;t\ge 0.\end{aligned}$$

Then

$$\begin{aligned} \varpi (|q|)-\varpi (|p|)&=\int _0^1 \frac{d}{dt}h(|p+t(q-p)|^2)\,dt\\&=2(q-p)\cdot \int _0^1h'(|p+t(q-p)|^2)(p+t(q-p))\,dt\\&:=\ell (p,q). \end{aligned}$$

Let \(\mathcal {K}\subseteq \mathbb {R}^N\times \mathbb {S}^{m\times m}\) be a given compact set. Then for all \((p, X),(q,Y)\in \mathcal {K}\) we have

$$\begin{aligned} \varpi (|q|)\mathcal {M}_{\lambda ,\Lambda }^-(Y)-\varpi (|p|)\mathcal {M}_{\lambda ,\Lambda }^-(X)&=\left( \varpi (|p|)+\ell (p,q)\right) \mathcal {M}_{\lambda ,\Lambda }^-(Y)-\varpi (|p|)\mathcal {M}_{\lambda ,\Lambda }^-(X)\\&=\varpi (|p|)\left\{ \mathcal {M}_{\lambda ,\Lambda }^-(Y)-\mathcal {M}_{\lambda ,\Lambda }^-(X)\right\} +\ell (p,q)\mathcal {M}_{\lambda ,\Lambda }^-(Y)\\&\ge \varpi (|p|)\mathcal {M}_{\lambda ,\Lambda }^-(Y-X)-\kappa |q-p|, \end{aligned}$$

where \(\kappa \) depends on \(\mathcal {K}\). See [9] for the last inequality used above.

Therefore \(F(x,p,X):=\varpi (|p|)\mathcal {M}_{\lambda ,\Lambda }^-(X)\) satisfies condition (F-2)\(^*\). Obviously, F satisfies (F-1) and (F-2).

Next we look at some examples with the goal of showing the following.

(i):

If H satisfies (H-d) and (H-i) but \(s\mapsto H(s,t)\) is not monotonic non-decreasing in s for each \(t\ge 0\), then Theorem 1.8 may not hold for supersolutions u with \(\inf _\Omega u<0\). See Remark 1.9 (ii).

(ii):

The strong comparison principle, Theorem 1.10, may fail if the assumption \(|Du|>0\) is not met when \(\varpi (0)=0\).

For (i), we consider \(F(x,p,X)=\text {trace}(X)\) and \(H(s,t)=\sin ^2 s+Nt^2\). Then H satisfies both (H-i) and (H-d), but \(s\mapsto H(s,t)\) is not monotonic. Let

$$\begin{aligned}u(x)=\frac{1}{8N}|x|^2-\frac{\pi }{2}.\end{aligned}$$

We note that u is a sign-changing function in the ball \(B:=B\left( o,2\sqrt{5\pi N/3}\right) \) such that

$$\begin{aligned}\frac{1}{4}\le \sin ^2\left( \frac{1}{8N}|x|^2-\frac{\pi }{2}\right) +\frac{1}{16N}|x|^2,\;\;\;\;\;\text {for}\;x\in B.\end{aligned}$$

Since \(F(x,Du,D^2u)=\Delta u=1/4\), we see that \(F(x,Du,D^2u)\le H(u,|Du|)\) holds in the ball B.

Let us now look at (ii). Let \(F(x,p,X)=|p|^2\,\text {trace}(X)\) and \(H(s,t)= 4N\,|t|\), where N is the dimension of \(\mathbb {R}^N\). As noted earlier, F satisfies (F-2)\(^*\) with \(\varpi (t)=t^2\). Clearly F satisfies (F-1). Note that \(u\equiv 0\) is a subsolution and \(w(x)=|x|^2\) is a supersolution of

$$\begin{aligned} F(x,Dw,D^2w)=H(w,|Dw|) \;\;\text {in}\;B(o,1)\subseteq \mathbb {R}^N. \end{aligned}$$
(5.6)

This demonstrates the necessity of the condition \(|Du|>0\) when \(\varpi (0)=0\) in the strong comparison principle, Theorem (1.10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, T., Mohammed, A. On a strong maximum principle for fully nonlinear subelliptic equations with Hörmander condition. Calc. Var. 60, 9 (2021). https://doi.org/10.1007/s00526-020-01869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01869-4

Mathematics Subject Classification

Navigation