Skip to main content

Advertisement

Log in

Antibody Dynamics for Plasmodium vivax Malaria: A Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Malaria is a mosquito-borne disease that, despite intensive control and mitigation initiatives, continues to pose an enormous public health burden. Plasmodium vivax is one of the principal causes of malaria in humans. Antibodies, which play a fundamental role in the host response to P. vivax, are acquired through exposure to the parasite. Here, we introduce a stochastic, within-host model of antibody responses to P. vivax for an individual in a general transmission setting. We begin by developing an epidemiological framework accounting for P. vivax infections resulting from new mosquito bites (primary infections), as well as the activation of dormant-liver stages known as hypnozoites (relapses). By constructing an infinite server queue, we obtain analytic results for the distribution of relapses in a general transmission setting. We then consider a simple model of antibody kinetics, whereby antibodies are boosted with each infection, but are subject to decay over time. By embedding this model for antibody kinetics in the epidemiological framework using a generalised shot noise process, we derive analytic expressions governing the distribution of antibody levels for a single individual in a general transmission setting. Our work provides a means to explore exposure-dependent antibody dynamics for P. vivax, with the potential to address key questions in the context of serological surveillance and acquired immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ademolue TW, Awandare GA (2018) Evaluating antidisease immunity to malaria and implications for vaccine design. Immunology 153(4):423–434

    Article  Google Scholar 

  • André D, Silva Júlio CAL, Antony S, Paola Marchesini CJ, Ter Kuile FFO, Lalloo DG (2019) Evaluation of Plasmodium vivax malaria recurrence in Brazil. Malaria J 18(1):18

    Article  Google Scholar 

  • Battle KE, Karhunen MS et al (2014) Geographical variation in Plasmodium vivax relapse. Malaria J 13(1):1–16

    Article  Google Scholar 

  • Battle KE, Lucas TCD et al (2019) Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet 394(10195):332–343

    Article  Google Scholar 

  • Beier JC, Beier MS, Vaughan JA, Pumpuni CB, Davis JR, Noden BH (1992) Sporozite transmission by anopheles freeborni and anopheles gambiae experimentally infected with plasmodium falciparum. J Am Mosquito Control Assoc 8:404–404

    Google Scholar 

  • Chatterjee U, Mukherjee SP (1989) On the non-homogeneous service system MX/G/$\infty $. Eur J Oper Res 38(2):202–207

    Article  MATH  Google Scholar 

  • Drakeley CJ et al (2005) Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Nat Acad Sci 102(14):5108–5113

    Article  Google Scholar 

  • Fowkes FJI, Boeuf P, Beeson JG (2016) Immunity to malaria in an era of declining malaria transmission. Parasitology 143(2):139–153

    Article  Google Scholar 

  • Franca CT et al (2016) An antibody screen of a Plasmodium vivax antigen library identifies novel merozoite proteins associated with clinical protection. PLoS Neglect Trop Dis 10(5):e0004639

    Article  Google Scholar 

  • Gomes PS, Bhardwaj J, Rivera-Correa J, Freire-De-Lima CG, Morrot A (2016) Immune escape strategies of malaria parasites. Front Microbiol 7:1617

    Article  Google Scholar 

  • Greenhouse B et al (2019) Priority use cases for antibody-detecting assays of recent malaria exposure as tools to achieve and sustain malaria elimination. In: Gates Open Research 3

  • He WQ, Karl S et al (2019) Antibodies to Plasmodium vivax reticulocyte binding protein 2b are associated with protection against P. vivax malaria in populations living in low malaria transmission regions of Brazil and Thailand. PLoS Neglect Trop Dis 13(8):e0007596

    Article  Google Scholar 

  • He W-Q, Shakri AR et al (2019) Antibody responses to Plasmodium vivax Duffy binding and Erythrocyte binding proteins predict risk of infection and are associated with protection from clinical malaria. PLoS Neglect Trop Dis 13(2):e0006987

    Article  Google Scholar 

  • Holman DF, Chaudhry ML, Kashyap BRK (1983) On the service system MX/G/$\infty $. Eur J Oper Res 13(2):142–145

    Article  MATH  Google Scholar 

  • Lewis PAW (1967) Non-homogeneous branching Poisson processes. J R Stat Soc Ser B (Methodological) 29(2):343–354

    MathSciNet  MATH  Google Scholar 

  • Lewis PAW, Shedler GS (1979) Simulation of nonhomogeneous Poisson processes by thinning. Naval Res Logist Quart 26(3):403–413

    Article  MathSciNet  MATH  Google Scholar 

  • Longley RJ, França CT et al (2017) Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malaria J 16(1):178

    Article  Google Scholar 

  • Longley RJ, White MT et al (2017) Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions. PLoS Neglect Trop Dis 11(9):e0005888

    Article  Google Scholar 

  • López C, Yepes-Pérez Y, Hincapié-Escobar N, Dıaz-Arévalo D, Patarroyo MA (2017) What is known about the immune response induced by Plasmodium vivax malaria vaccine candidates? Front Immunol 8:126

    Google Scholar 

  • Mehra S, McCaw JM, Flegg MB, Taylor PG, Flegg JA (2020) An activation-clearance model for Plasmodium vivax malaria. Bull Math Biol 82(2):32

    Article  MathSciNet  MATH  Google Scholar 

  • Mikolajczak SA et al (2015) Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17(4):526–535

    Article  Google Scholar 

  • Mueller I, Galinski MR, Kevin Baird J, Carlton JM, Kochar DK, Alonso PL, del Portillo HA (2009) Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 9(9):555–566

    Article  Google Scholar 

  • Mueller IVO, Mary RG Takafumi T, Myriam A-H, William EC, Christopher LK (2013) Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. In: Advances in parasitology, vol 81. Elsevier, pp 77–131

  • Naing C, Maxine AW, Victor NW, Joon WM (2014) Is Plasmodium vivax malaria a severe malaria? A systematic review and meta-analysis. PLoS Neglect Trop Dis 8(8):e3071

    Article  Google Scholar 

  • Parzen E (1999) Stochastic processes, vol 24. In: SIAM, Philadelphia

  • Pires CV et al (2018) Blood-stage Plasmodium vivax antibody dynamics in a low transmission setting: a nine year follow-up study in the Amazon region. PLoS ONE 13(11):e0207244

    Article  Google Scholar 

  • Pothin E, Ferguson NM, Drakeley CJ, Ghani AC (2016) Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models. Malaria J 15(1):79

    Article  Google Scholar 

  • Schofield L, Mueller I (2006) Clinical immunity to malaria. Curr Mol Med 6(2):205–221

    Article  Google Scholar 

  • Struik SS, Riley EM (2004) Does malaria suffer from lack of memory? Immunol Rev 201(1):268–290

    Article  Google Scholar 

  • Taylor RR, Egan A, McGuinness D, Jepson A, Adair R, Drakely C, Riley E (1996) Selective recognition of malaria antigens by human serum antibodies is not genetically determined but demonstrates some features of clonal imprinting. Int Immunol 8(6):905–915

    Article  Google Scholar 

  • Tham W-H, Beeson JG, Rayner JC (2017) Plasmodium vivax vaccine research-we’ve only just begun. Int J Parasitol 47(2–3):111–118

    Article  Google Scholar 

  • Wardrop NA, Barnett AG, Atkinson J-A, Clements ACA (2013) Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province, China. Malaria J 12(1):452

    Article  Google Scholar 

  • Weber GE et al (2017) Sero-catalytic and antibody acquisition models to estimate differing malaria transmission intensities in Western Kenya. Sci Rep 7(1):16821

    Article  Google Scholar 

  • White NJ, Mallika I (2012) Relapse. In: Advances in parasitology, vol 80. Elsevier, pp 113–150

  • White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, Ghani AC (2014) Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis 210(7):1115–1122

    Article  Google Scholar 

  • White MT, Stephan K, Katherine EB, Simon IH, Ivo M, Azra CG (2014) Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. eLife 3:e04692

    Article  Google Scholar 

  • Yman V, White MT, Rono J et al (2016) Antibody acquisition models: a new tool for serological surveillance of malaria transmission intensity. Sci Rep 6:19472

    Article  Google Scholar 

  • Yman V, White MT, Asghar M, Sundling C, Sondén K, Draper SJ, Osier FHA, Färnert A (2019) Antibody responses to merozoite antigens after natural Plasmodium falciparum infection: kinetics and longevity in absence of re-exposure. BMC Med 17(1):22

    Article  Google Scholar 

Download references

Acknowledgements

S. Mehra acknowledges funding from the Australian Mathematical Sciences Institute (AMSI) Vacation Research Scholarships 2018/2019. J.M. McCaw’s research is supported by the Australian Research Council (ARC) Discovery Project DP170103076. J.A. Flegg’s research is supported by the ARC DECRA Fellowship DE160100227. P.G. Taylor’s research is supported by the ARC Laureate Fellowship FL130100039 and the ARC Centre of Excellence for the Mathematical and Statistical Frontiers (ACEMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somya Mehra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Recall that \(\varvec{\omega }(t)\) denotes the antibody response to a panel of proteins \(V_1, \dots , V_R\) time t after a single infection, with

$$\begin{aligned} \varvec{\omega }(t) = (\eta _{1} e^{-b_1 t}, \dots , \eta _R e^{-b_R t}) \end{aligned}$$

from Eq. (9), with \(b_i, \eta _i > 0\) for each i.

Given that the distribution of \(\eta _i\) decays exponentially for each i, the MGF of \(\varvec{\omega }(t)\) is well defined in an open hypersphere around the origin. We seek to show that the inequality

$$\begin{aligned} \frac{\nu }{\nu +1}\Bigg [1 - B(t) + \int ^t_0 \Big ( G(u) {\mathbb {E}} \big [e^{ \varvec{\omega }(t - u) \cdot \varvec{s}} \big ] \Big ) \mathrm{d}u \Bigg ] < 1 \end{aligned}$$
(39)

also holds for an open hypersphere around \(\varvec{s}=\varvec{0}\).

By noting that \(G(u)=\mathrm{d}B(u)/\mathrm{d}u\) (Eq. 13), condition (39) can equivalently be written

$$\begin{aligned} \int ^{t}_0 G(u) \Big ( {\mathbb {E}} \big [e^{ \varvec{\omega }(t - u) \cdot \varvec{s}} \big ] - 1 \Big ) \mathrm{d}u < \frac{1}{\nu }. \end{aligned}$$
(40)

Since \(\varvec{\omega }(t) \le \varvec{\omega }(0)\) for all \(t \ge 0\),

$$\begin{aligned} \int ^{t}_0 G(u) \Big ( {\mathbb {E}} \big [e^{ \varvec{\omega }(t - u) \cdot \varvec{s}} \big ] - 1 \Big ) \mathrm{d}u \le B(t) \Big ( {\mathbb {E}} \big [e^{ \varvec{\omega }(0) \cdot \varvec{s}} \big ] - 1 \Big ) \le {\mathbb {E}} \big [e^{ \varvec{\omega }(0) \cdot \varvec{s}} \big ] - 1, \end{aligned}$$

noting that the probability mass \(B(t) \in [0, 1]\) for all \(t \ge 0\).

By assumption, \({\mathbb {E}} \big [e^{ \varvec{\omega }(0) \cdot \varvec{s}} \big ]\), the MGF of \(\varvec{\omega }(0) = (\eta _1, \dots , \eta _R)\) is well defined in some open hypersphere around the origin. It follows that \({\mathbb {E}} \big [e^{ \varvec{\omega }(0) \cdot \varvec{s}} \big ]\) is differentiable, therefore continuous at the origin with respect to \(\varvec{s}\), hence, there exists \(\delta >0\) such that

$$\begin{aligned} \Big |{\mathbb {E}} \big [e^{ \varvec{\omega }(0) \cdot \varvec{s}} \big ] - 1 \Big |\le \frac{1}{\nu } \text { for all } |\varvec{s} |< \delta , \end{aligned}$$

that is, the condition specified in Eq. (39) is satisfied in an open hypersphere around the origin, as required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, S., McCaw, J.M., Flegg, M.B. et al. Antibody Dynamics for Plasmodium vivax Malaria: A Mathematical Model. Bull Math Biol 83, 6 (2021). https://doi.org/10.1007/s11538-020-00837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00837-5

Keywords

Navigation