Skip to main content
Log in

Simultaneous nitrification and denitrification in moving bed bioreactor and other biological systems

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Moving bed bioreactor (MBBR), used for treatment of municipal and industrial wastewater, is a completely mixed attached growth type system that involves microorganisms which grow as biofilm on the surface of the suspended carriers within the reactor. If the biofilm is thick enough, dissolved oxygen in the reactor would not diffuse into deeper strata and thus anoxic/anaerobic condition develops in those regions facilitating growth of heterotrophic denitrifying bacteria. Autotrophic nitrifiers colonize the outer surface of biofilm in biocarriers as usual. Thus, development of aerobic nitrifying and anoxic denitrifying microorganisms facilitates nitrification and denitrification simultaneously within different zones of the same biofilm. The present paper summarizes the feasibility of nitrogen removal in MBBR systems via autotrophic nitrification followed by heterotrophic denitrification, including various aspects of simultaneous nitrification and denitrification (SND) process in other biofilm units as well. Apart from that, the areas for further investigation are briefly narrated from studies conducted earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. CPCB, Ministry of Environment, Forest and Climatic Change (MoEFCC), India, Environment (Protection) Rules, enacted in 1986

  2. Welander U, Henrysson T, Welander T (1998) Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res 32:1564–1570

    Article  CAS  Google Scholar 

  3. Al-Zuhairy MS, Bahaa Z, Mizeel WS (2015) Biological phosphorus and nitrogen removal from wastewater using moving bed biofilm reactor (MBBR). Eng Technol J 33:1731–1739

    Article  Google Scholar 

  4. Luostarinen S, Luste S, Valentin L, Rintala J (2006) Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Res 40:1607–1615

    Article  CAS  PubMed  Google Scholar 

  5. Jimenez J, Dursun D, Dold P, Bratby J, Keller J, Parker D (2010) Simultaneous nitrification-denitrification to meet low effluent nitrogen limits: Modeling, performance and reliability. Proc Water Env Fed 2010:2404–2421

    Article  Google Scholar 

  6. Pochana K, Keller J (1999) Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci Technol 39:61–68

    Article  CAS  Google Scholar 

  7. Seifi M, Fazaelipoor MH (2012) Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Appl Math Model 36:5603–5613

    Article  Google Scholar 

  8. Martins AM, Pagilla K, Heijnen JJ, van Loosdrecht MC (2004) Filamentous bulking sludge—a critical review. Water Res 38:793–817

    Article  CAS  PubMed  Google Scholar 

  9. Irvine RL, Murthy DVS, Arora ML, Copeman JL and Heidman JA (1987) Analysis of full-scale SBR operation at Grundy Center, Iowa. J Water Pollut Control Federation 132-138

  10. Pochana K, Keller J, Lant P (1999) Model development for simultaneous nitrification and denitrification. Water Sci Technol 39:235–243

    Article  CAS  Google Scholar 

  11. Jun Z, Yang FL, Meng FG, Peng AN, Di WANG (2007) Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge. Journal of Environmental Sciences 19:1281–1286

    Article  Google Scholar 

  12. Cao Y, Zhang C, Rong H, Zheng G, Zhao L (2017) The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Res 108:86–94

    Article  CAS  PubMed  Google Scholar 

  13. Sager AE (2016) Experimental studies of simultaneous nitrification denitrification and phosphorus removal at falkenburg advanced wastewater treatment plant. PhD Thesis, University of South Florida

  14. Helmer C, Kunst S (1998) Simultaneous nitrification/denitrification in an aerobic biofilm system. Water Science and Technology 37:183–187

    Article  CAS  Google Scholar 

  15. Morita M, Uemoto H, Watanabe A (2008) Nitrogen-removal bioreactor capable of simultaneous nitrification and denitrification for application to industrial wastewater treatment. Biochem Eng J 41:59–66

    Article  CAS  Google Scholar 

  16. Jianlong W, Yongzhen P, Shuying W, Yongqing GAO (2008) Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor. Chin J Chem Eng 16:778–784

    Article  Google Scholar 

  17. Sarioglu M, Insel G, Artan N, Orhon D (2009) Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor. J Membr Sci 337:17–27

    Article  CAS  Google Scholar 

  18. Fu B, Liao X, Ding L, Ren H (2010) Characterization of microbial community in an aerobic moving bed biofilm reactor applied for simultaneous nitrification and denitrification. World J Microbiol Biotechnol 26:1981–1990

    Article  CAS  Google Scholar 

  19. Chu L, Wang J (2011) Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere 83:63–68

    Article  CAS  PubMed  Google Scholar 

  20. Chu L, Wang J (2011) Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor. Chem Eng J 170:220–225

    Article  CAS  Google Scholar 

  21. Satoh H, Ono H, Rulin B, Kamo J, Okabe S, Fukushi KI (2004) Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors. Water Res 38:1633–1641

    Article  CAS  PubMed  Google Scholar 

  22. Xia S, Li J, Wang R (2008) Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecol Eng 32:256–262

    Article  Google Scholar 

  23. Ødegaard H, Cimbritz M, Christensson M, Dahl CP (2010) Separation of biomass from moving bed biofilm reactors (MBBRs). Proc. Water Environ. Fed. 22:212–233

    Article  Google Scholar 

  24. Borkar RP, Gulhane ML, Kotangale AJ (2013) Moving bed biofilm reactor–a new perspective in wastewater treatment. Environ Sci Toxicol Food Technol 6:15–21

    Google Scholar 

  25. Kawan JA, Hasan HA, Suja F, Jaafar OB, Abd-Rahman R (2016) A review on sewage treatment and polishing using moving bed bioreactor (MBBR). J Eng Sci Technol 11:1098–1120

    Google Scholar 

  26. Wang S, Parajuli S, Sivalingam V, Bakke R (2019) Biofilm in moving bed biofilm process for wastewater treatment. In Bacterial Biofilms, IntechOpen

    Google Scholar 

  27. Safwat SM (2019) Moving bed biofilm reactors for wastewater treatment: a review of basic concepts. Int J Res 6:85–90

    Google Scholar 

  28. Anthonisen AC, Loehr RC, Prakasam TBS and Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation, 835-852

  29. Tal Y, Watts JE, Schreier SB, Sowers KR, Schreier HJ (2003) Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system. Aquaculture 215:187–202

    Article  CAS  Google Scholar 

  30. Hibiya K, Terada A, Tsuneda S, Hirata A (2003) Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. J Biotechnol 100:23–32

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira ACDG, Correa CZ, Prates KVMC, Lopes DD (2017) Nitrifying, Denitrifying and Heterotrophic Biomass Present in Moving Bed-Reactor. Am J Env Sci 13:47–57

    Article  Google Scholar 

  32. Campos JL, Garrido-Fernandez JM, Mendez R, Lema JM (1999) Nitrification at high ammonia loading rates in an activated sludge unit. Biores Technol 68:141–148

    Article  CAS  Google Scholar 

  33. Rittmann BE, Langeland WE (1985) Simultaneous denitrification with nitrification in single-channel oxidation ditches. J Water Pollut Control Fed 57:300–308

    CAS  Google Scholar 

  34. Hao X, Doddema HJ, van Groenestijn JW (1997) Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch. Biores Technol 59:207–215

    Article  CAS  Google Scholar 

  35. Trivedi H (2000) Simultaneous nitrification/denitrification by monitering NADH fluorescence in activated sludge. Technical paper presented at WEFTEC, 2000.

  36. Ammary BY, Radaideh JA (2005) Simultaneous nitrification and denitrification in an oxidation ditch plant. Chem Biochem Eng Q 19:207–212

    CAS  Google Scholar 

  37. Insel G, Artan N, Orhon D (2005) Effect of aeration on nutrient removal performance of oxidation ditch systems. Environ Eng Sci 22:802–815

    Article  CAS  Google Scholar 

  38. Liu Y, Shi H, Xia L, Shi H, Shen T, Wang Z, Wang G, Wang Y (2010) Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Biores Technol 101:901–906

    Article  CAS  Google Scholar 

  39. Gogina E, Gulshin I (2016) Simultaneous nitrification and denitrification with low dissolved oxygen level and C/N ratio. Procedia engineering 153:189–194

    Article  CAS  Google Scholar 

  40. Collivignarelli C, Bertanza G (1999) Simultaneous nitrification-denitrification processes in activated sludge plants: Performance and applicability. Water Sci Technol 40:187–194

    Article  CAS  Google Scholar 

  41. Insel G (2007) Effects of design and aeration control parameters on simultaneous nitrification and denitrification (SNdN) performance for activated sludge process. Environ Eng Sci 24:675–686

    Article  CAS  Google Scholar 

  42. Zhang P, Zhou Qi (2007) Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration. Front Environ Sci Eng China 1:49–52

    Article  Google Scholar 

  43. Lim JY, Kim HS, Park SY, Kim JH (2020) Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor. Environ Eng Res 25:251–257

    Google Scholar 

  44. Münch EV, Lant P, Keller J (1996) Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Res 30:277–284

    Article  Google Scholar 

  45. Filali-Meknassi Y, Auriol M, Tyagi RD, Comeau Y, Surampalli RY (2005) Design strategy for a simultaneous nitrification/denitrification of a slaughterhouse wastewater in a sequencing batch reactor: ASM2d modeling and verification. Environ Technol 26:1081–1100

    Article  CAS  PubMed  Google Scholar 

  46. Guo J, Zhang L, Chen W, Ma F, Liu H, Tian Y (2013) The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures. Biores Technol 133:59–67

    Article  CAS  Google Scholar 

  47. Santos VA, Tramper J, Wijffels RH (1993) Simultaneous nitrification and denitrification using immobilized microorganisms. Biomater Artif Cells Immobilization Biotechnol 21:317–322

    Article  CAS  PubMed  Google Scholar 

  48. Nakano K, Iwasawa H, Ito O, Lee TJ, Matsumura M (2004) Improved simultaneous nitrification and denitrification in a single reactor by using two different immobilization carriers with specific oxygen transfer characteristics. Bioprocess Biosyst Eng 26:141–145

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Xia S, Chen L, Zhao J (2006) Effect of DO on Simultaneous Nitrification and Denitrification in MBBR. Journal-Tongji University 34:514

    CAS  Google Scholar 

  50. Wang J, Rong H, Cao Y, Zhang C (2020) Factors affecting simultaneous nitrification and denitrification (SND) in a moving bed sequencing batch reactor (MBSBR) system as revealed by microbial community structures. Bioprocess Biosyst Eng 43:1833–1846

    Article  CAS  PubMed  Google Scholar 

  51. Uemoto H, Saiki H (2000) Nitrogen removal reactor using packed gel envelopes containing Nitrosomonas europaea and Paracoccus denitrificans. Biotechnol Bioeng 67:80–86

    Article  CAS  PubMed  Google Scholar 

  52. Menoud P, Wong CH, Robinson HA, Farquha A, Barford JP, Barton GW (1999) Simultaneous nitrification and denitrification using Siporax™ packing. Water Sci Technol 40:153–160

    Article  CAS  Google Scholar 

  53. Yang Z, Sun H, Wu W (2020) Intensified simultaneous nitrification and denitrification performance in integrated packed bed bioreactors using PHBV with different dosing methods. Environ Sci Pollut Res 27:21560–21569

    Article  CAS  Google Scholar 

  54. Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37:98–107

    Article  CAS  Google Scholar 

  55. Sarioglu M, Insel G, Artan N, Orhon D (2008) Modelling of long-term simultaneous nitrification and denitrification (SNDN) performance of a pilot scale membrane bioreactor. Water Sci Technol 57:1825–1833

    Article  CAS  PubMed  Google Scholar 

  56. Hocaoglu SM, Insel G, Cokgor EU, Orhon D (2011) Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. Biores Technol 102:4333–4340

    Article  CAS  Google Scholar 

  57. Hocaoglu SM, Insel G, Cokgor EU, Orhon D (2011) Effect of sludge age on simultaneous nitrification and denitrification in membrane bioreactor. Biores Technol 102:6665–6672

    Article  CAS  Google Scholar 

  58. Walters E, Hille A, He M, Ochmann C, Horn H (2009) Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Res 43:4461–4468

    Article  CAS  PubMed  Google Scholar 

  59. Machat H, Boudokhane C, Roche N, Dhaouadi H (2019) Effects of C/N Ratio and DO concentration on Carbon and Nitrogen removals in a Hybrid Biological Reactor. Biochem Eng J 151:107313

    Article  CAS  Google Scholar 

  60. do Canto CSA, Rodrigues JAD, Ratusznei SM, Zaiat M and Foresti E (2008) Feasibility of nitrification/denitrification in a sequencing batch biofilm reactor with liquid circulation applied to post-treatment. Bioresource Technol 99:644–654

  61. Xia Z, Wang Q, She Z, Gao M, Zhao Y, Guo L, Jin C (2019) Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Sci Total Environ 697:134047

    Article  CAS  PubMed  Google Scholar 

  62. Li YZ, He YL, Ohandja DG, Ji J, Li JF, Zhou T (2008) Simultaneous nitrification–denitrification achieved by an innovative internal-loop airlift MBR: Comparative study. Biores Technol 99:5867–5872

    Article  CAS  Google Scholar 

  63. Zhang T, Wei C (2013) A new developed airlift reactor integrated settling process and its application for simultaneous nitrification and denitrification nitrogen removal. Sci World J 2013:1–7

    Google Scholar 

  64. Downing LS, Nerenberg R (2007) Performance and microbial ecology of the hybrid membrane biofilm process for concurrent nitrification and denitrification of wastewater. Water Sci Technol 55:355–362

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen NC, Chen SS, Nguyen HT, Ray SS, Ngo HH, Guo W, Lin PH (2016) Innovative sponge-based moving bed–osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment. Water Res 91:305–313

    Article  CAS  PubMed  Google Scholar 

  66. Yang S, Yang F, Fu Z, Lei R (2009) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Biores Technol 100:2369–2374

    Article  CAS  Google Scholar 

  67. Khanitchaidecha W, Nakaruk A, Koshy P, Futaba K (2015) Comparison of simultaneous nitrification and denitrification for three different reactors. BioMed Res Int 2015

  68. Aslan S, Dahab M (2008) Nitritation and denitritation of ammonium-rich wastewater using fluidized-bed biofilm reactors. J Hazard Mater 156:56–63

    Article  CAS  PubMed  Google Scholar 

  69. Schramm A, de Beer D, Wagner M, Amann R (1998) Identification and activities in situ of nitrosospiraand Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Env Microbiol 64:3480–3485

    Article  CAS  Google Scholar 

  70. Piculell M, Welander P, Jönsson K, Welander T (2016) Evaluating the effect of biofilm thickness on nitrification in moving bed biofilm reactors. Environ Technol 37:732–743

    Article  CAS  PubMed  Google Scholar 

  71. Gieseke A, Bjerrum L, Wagner M, Amann R (2003) Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ Microbiol 5:355–369

    Article  CAS  PubMed  Google Scholar 

  72. Mota C, Ridenoure J, Cheng J, de los Reyes FL III (2005) High levels of nitrifying bacteria in intermittently aerated reactors treating high ammonia wastewater. FEMS Microbiol Ecol 54:391–400

    Article  CAS  PubMed  Google Scholar 

  73. Zart D, Bock E (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch Microbiol 169:282–286

    Article  CAS  PubMed  Google Scholar 

  74. Egli K, Bosshard F, Werlen C, Lais P, Siegrist H, Zehnder AJB, Van der Meer JR (2003) Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbial Ecol 419–432

  75. Chen D, Suter HC, Islam A, Edis R (2010) Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem 42:660–664

    Article  CAS  Google Scholar 

  76. Garcia K (2016) The effect of biofilm carrier length on nitrification in moving bed biofilm reactors: an examination of mixing intensity, shock loadings, and pH changes

  77. Fux C, Boehler M, Huber P, Brunner I, Siegrist H (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol 99:295–306

    Article  CAS  PubMed  Google Scholar 

  78. Zekker I, Rikmann E, Tenno T, Saluste A, Tomingas M, Menert A, Loorits L, Lemmiksoo V, Tenno T (2012) Achieving nitritation and anammox enrichment in a single moving-bed biofilm reactor treating reject water. Environ Technol 33:703–710

    Article  CAS  PubMed  Google Scholar 

  79. Bassin JP, Kleerebezem R, Rosado AS, van Loosdrecht MM, Dezotti M (2012) Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environ Sci Technol 46:1546–1555

    Article  CAS  PubMed  Google Scholar 

  80. Miyahara M, Kim SW, Fushinobu S, Takaki K, Yamada T, Watanabe A, Miyauchi K, Endo G, Wakagi T, Shoun H (2010) Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl Environ Microbiol 76:4619–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su JJ, Liu BY, Liu CY (2001) Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. J Appl Microbiol 90:457–462

    Article  CAS  PubMed  Google Scholar 

  82. Brycki B, Seifert K, Szymanska K, Domka F (2000) The effect of oxidizing biocides on desulfurication and denitrification processes. Polish J Environ Stud 9:363–368

    CAS  Google Scholar 

  83. Kim M, Jeong SY, Yoon SJ, Cho SJ, Kim YH, Kim MJ, Ryu EY, Lee SJ (2008) Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. J Biosci Bioeng 106:498–502

    Article  CAS  PubMed  Google Scholar 

  84. Joo HS, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification–aerobic denitrification by Alcaligenes faecalis No. 4. J Biosci Bioeng 100:184–191

    Article  CAS  PubMed  Google Scholar 

  85. Puznava N, Thornberg D, Magnin P, Reddet E (2000) Aeration control on a nitrifying biofilter system by using on-line analyzers. Water Sci Technol 41:369–374

    Article  CAS  Google Scholar 

  86. Garrido JM, Van Benthum WAJ, Van Loosdrecht MCM, Heijnen JJ (1997) Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol Bioeng 53:168–178

    Article  CAS  PubMed  Google Scholar 

  87. Metcalf EE, Eddy H (2003) Wastewater engineer treatment disposal, reuse, 4th edn. McGraw Hill Publishers, New York

    Google Scholar 

  88. Van Rijn J, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquacult Eng 34:364–376

    Article  Google Scholar 

  89. Third KA, Burnett N, Cord-Ruwisch R (2003) Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotechnol Bioeng 83:706–720

    Article  CAS  PubMed  Google Scholar 

  90. Okabe S, Hiratia K, Ozawa Y, Watanabe Y (1996) Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms. Biotechnol Bioeng 50:24–35

    Article  CAS  PubMed  Google Scholar 

  91. Kindaichi T, Ito T, Okabe S (2004) Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guo J, Zhang L, Chen W, Ma F, Liu H, Tian Y (2013) The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures. Bioresour Technol 133:59–67

    Article  CAS  PubMed  Google Scholar 

  93. Stenstrom MK, Poduska RA (1980) The effect of dissolved oxygen concentration on nitrification. Water Res 14:643–649

    Article  CAS  Google Scholar 

  94. Bjornberg C, Wei L, Robert Z (2009) Effect of temperature on biofilm growth dynamics and nitrification kinetics in a full-scale MBBR system. Proceed Water Environ Federation 12:4407–4426

    Article  Google Scholar 

  95. Zinatizadeh AAL, Ghaytooli E (2015) Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization. J Taiwan Inst Chem Eng 53:98–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roumi Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, R., Mazumder, D. Simultaneous nitrification and denitrification in moving bed bioreactor and other biological systems. Bioprocess Biosyst Eng 44, 635–652 (2021). https://doi.org/10.1007/s00449-020-02475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02475-6

Keywords

Navigation