Skip to main content

Advertisement

Log in

Direct, water-chemistry mediated, and cascading effects of human-impact intensification on multitrophic biodiversity in ponds

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

There is a consensus that human activities affect biodiversity in pond ecosystems. However, the majority of studies have mainly focused on the direct effect of human activities on a single group, despite the fact that anthropogenically induced biodiversity loss in ecosystems occurs across multiple trophic levels and may depend on both altered habitat (e.g., water chemistry) and on trophic interactions cascading up the trophic network. In this study, we analyzed the simultaneous direct, water-chemistry mediated and trophic network cascading effects of the overall human-impact intensification on density (biomass/abundance) and richness (number of taxa) across all trophic levels in pond ecosystems. For this, we collected and combined multi-taxon data (341 taxa) for macrophytes, phytoplankton, zooplankton, benthic and epiphytic macroinvertebrates, and fishes. We showed that human-impact intensification affected the densities and richness of almost all trophic levels across the study ecosystems, and resulted in an overall negative effect on the multitrophic diversity of the entire community. We detected direct effect of human-impact intensification, but no indirect effects, on the richness of primary producers. In contrast, the indirect effects mediated through the nutrient content in the water were the most influential drivers of multitrophic diversity in the invertebrate communities. At the same time, the indirect effects through the trophic network cascades were detected mainly within the fish community. Our findings improve the mechanistic understanding of multitrophic diversity responses in ponds under the ongoing intensification of anthropogenic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams PA (1995) Monotonic or unimodal diversity productivity gradients—what does competition theory predict. Ecology 76:2019–2027

    Article  Google Scholar 

  • Ako TA, Onoduku US, Oke SA, Essien BI, Idris FN, Umar AN, Ahmed AA (2014) Environmental effects of sand and gravel mining on land and soil in Luku, Minna, Nigger State, North Central Nigeria. J Geosci Geomat 2:42–49. https://doi.org/10.12691/jgg-2-2-1

    Article  Google Scholar 

  • Allan DJ, Abell R, Hogan Z, Revenga C, Taylor BW, Welcomme RL, Winemiller K (2005) Overfishing of inland waters. Bioscience 55:104–1051

    Article  Google Scholar 

  • American Public Health Association (APHA) (1985) Standard methods for examination of water and wastewater, 16th edn. American Public Health Association, Washington, DC, p 1481

    Google Scholar 

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:761–776

    Article  Google Scholar 

  • Andersen T, Cranston PS, Epler JH (2013) The larvae of Chironomidae (Diptera) of the Holarctic region—Keys and diagnoses. Insect Syst Evol Suppl 66:571

    Google Scholar 

  • Attwood SJ, Maron M, House APN, Zammit C (2008) Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Global Ecol Biogeogr 17:585–599. https://doi.org/10.1111/j.1466-8238.2008.00399.x

    Article  Google Scholar 

  • Barbiero RP, Lesht BM, Warren GJ (2011) Evidence for bottom–up control of recent shifts in the pelagic food web of Lake Huron. J Gt Lakes Res 37:78–85

    Article  Google Scholar 

  • Barnes AD, Allen K, Kreft H et al (2017) Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat Ecol Evol 1:1511–1519. https://doi.org/10.1038/s41559-017-0275-7

    Article  PubMed  Google Scholar 

  • Bartoš E (1959) Virnici-Rotatoria. Fauna ČSR, svezek 15, Nakladestvi Českoslovenke Akademie Ved, Praha, 969 p

  • Bauernfeind E, Humpesch U (2001) Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ökologie. Verlag des Naturhistorischen Museums, Wien, p 239

    Google Scholar 

  • Bayram A, Önsoy H (2015) Sand and gravel mining impact on the surface water quality: a case study from the city of Tirebolu (Giresun Province, NE Turkey). Environ Earth Sci 73:1997–2011. https://doi.org/10.1007/s12665-014-3549-2

    Article  CAS  Google Scholar 

  • Belpaire C, Smolders R, Auweele IV, Ercken D, Breine J, Van Thuyne G, Ollevier F (2000) An Index of biotic integrity characterizing fish populations and the ecological quality of flandrian water bodies. Hydrobiologia 434:17–33

    Article  Google Scholar 

  • Benedetti F, Gasparini S, Ayata SD (2015) Identifying copepod functional groups from species functional traits. J Plankton Res 38:159–166. https://doi.org/10.1093/plankt/fbv096

    Article  PubMed  PubMed Central  Google Scholar 

  • Biggs J, Williams P, Whitfield PN, Weatherby A (2005) 15 years of pond assessment in Britain: results and lessons learned from the work of pond conservation. Aquat Conserv 15:693–714. https://doi.org/10.1002/aqc.745

    Article  Google Scholar 

  • Blicharska M, Andersson J, Bergsten J, Bjelke U, Hilding-Rydevik T, Johansson F (2016) Effects of management intensity, function and vegetation on the biodiversity in urban ponds. Urban For Urban Green 20:103–112. https://doi.org/10.1016/j.ufug.2016.08.012

    Article  Google Scholar 

  • Blüthgen N, Dormann CF, Prati D et al (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220

    Article  Google Scholar 

  • Bockwoldt KA, Nodine ER, Mihuc TB, Shambaugh AD, Stockwell JD (2017) Reduced phytoplankton and zooplankton diversity associated with increased cyanobacteria in Lake Champlain, USA. J Contemp Water Res Educ 160:100–118

    Article  Google Scholar 

  • Bogut I, Vidaković J, Palijan G, Čerba D (2007) Benthic macroinvertebrates associated with four species of macrophytes. Biologia 62:600–606. https://doi.org/10.2478/s11756-007-0118-0

    Article  Google Scholar 

  • Boisson JC, Perrodin Y (2006) Effects of road runoff on biomass and metabolic activity of periphyton in experimental streams. J Hazard Mater 132:148–154. https://doi.org/10.1016/j.jhazmat.2005.07.083

    Article  CAS  PubMed  Google Scholar 

  • Brönmark C, Hansson LA (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29:290–306. https://doi.org/10.1017/S0376892902000218

    Article  CAS  Google Scholar 

  • Bundschuh M, McKie BG (2016) An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshw Biol 61:2063–2074. https://doi.org/10.1111/fwb.12608

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, NY, USA

    Google Scholar 

  • Buzhdygan OY, Meyer ST, Weisser WW, Eisenhauer N, Ebeling A, Borrett SR, Buchmann N, Cortois R, De Deyn GB, de Kroon H, Gleixner G, Hertzog LR, Hines J, Lange M, Mommer L, Ravenek J, Scherber C, Scherer-Lorenzen M, Scheu S, Schmid B, Steinauer K, Strecker T, Tietjen B, Vogel A, Weigelt A, Petermann JS (2020) Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat Ecol Evol 4:393–405. https://doi.org/10.1038/s41559-020-1123-8

    Article  PubMed  Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  PubMed  Google Scholar 

  • Casselman JM, Lewis CA (1996) Habitat requirements of the northern pike (Esox lucius). Can J Fish Aquat Sci 53:161–174

    Article  Google Scholar 

  • Cayrou J, Céréghino R (2005) Life-cycle phenology of some aquatic insects: implications for pond conservation. Aquat Conserv 15:559–571. https://doi.org/10.1002/aqc.739

    Article  Google Scholar 

  • Céréghino R, Boix D, Cauchie HM, Martens K, Oertli B (2014) The ecological role of ponds in a changing world. Hydrobiologia 723:1–6. https://doi.org/10.1007/s10750-013-1719-y

    Article  Google Scholar 

  • Chang KH, Doi H, Nishibe Y, Nakano S (2010) Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki,A. priodonta and A. girodi in pond ecosystems. J Limnol 69:209–216. https://doi.org/10.3274/JL10-69-2-03

    Article  Google Scholar 

  • Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Cornell University Press, Ithaca, New York

    Google Scholar 

  • Cyr H, Downing JA (1988a) Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can J Fish Aquat Sci 45:976–984

    Article  Google Scholar 

  • Cyr H, Downing JA (1988b) The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshw Biol 20:365–374

    Article  Google Scholar 

  • Declerck SAJ, Bakker ES, van Lith B, Kersbergen A, van Donk E (2011) Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic Appl Ecol 12:466–475. https://doi.org/10.1016/j.baae.2011.05.001

    Article  Google Scholar 

  • Della Bella V, Bazzanti M, Dowgiallo MG, Iberite M (2008) Macrophyte diversity and physico-chemical characteristics of Tyrrhenian coast ponds in central Italy: implications for conservation. Hydrobiologia 597:85–95. https://doi.org/10.1007/s10750-007-9216-9

    Article  CAS  Google Scholar 

  • Della Bella V, Mancini L (2009) Freshwater diatom and macroinvertebrate diversity of coastal permanent ponds along a gradient of human impact in a Mediterranean eco-region. Hydrobiologia 364:25–41. https://doi.org/10.1007/s10750-009-9890-x

    Article  Google Scholar 

  • Dévai I (1977) Az Evezölábú rákok (Calanoida es Cyclopoida). Vízügyi hidrobiológia 5, Vízügyi Dokumentációs és Továbbképzö Intézet, Budapest, 220 p

  • Dubey D, Dutta V (2020) Nutrient enrichment in lake ecosystem and its effects on algae and macrophytes. In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development. Springer, Singapore

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. https://doi.org/10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  • Dudgeon D (2010) Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Curr Opin Env Sust 2:422–430. https://doi.org/10.1016/j.cosust.2010.09.001

    Article  Google Scholar 

  • Dussart B (1969) Les copepodes des eaux continentales d′Europe occidentale, Tom II: Cyclopoides et Biologie. N. Boube et Cie, Paris, p 292

    Google Scholar 

  • Ebeling A, Meyer ST, Abbas M, Eisenhauer N, Hillebrand H, Lange M, Scherber C, Vogel A, Weigelt A, Weisser WW (2014) Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0106529

    Article  CAS  Google Scholar 

  • Egertson CJ, Kopaska JA, Downing JA (2004) A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 524:145–156

    Article  Google Scholar 

  • Elliot J, Humpesch U (2010) Mayfly larvae (Ephemeroptera) of Britain and Ireland: Keys and Review of their Ecology. Freshwater Biological Association, Ambleside, p 152

    Google Scholar 

  • Elliot J, Humpesch U, Macan T (1988) Larvae of the British Ephemeroptera: a key with ecological notes. FBA Scientific Publication, Ambleside, p 145

    Google Scholar 

  • Eiseler B (2005) Bildbestimmungsschlussel für die Eintagsfliegenlarven der deutschen Mittelgebirge und des Tieflandes (Identification key to the mayfly larvae of the German Highlands und Lowlands. Lauterbornia 53:1–112

    Google Scholar 

  • Flössner D (1972) Krebstiere, Crustacea: Kiemen und Blattfüsser, Branchiopoda; Fischläuse, Branchiura, Tierwelt Deutschl, 60. Gustav Fischer Verlag, Jena, p 501

    Google Scholar 

  • Foster WA, Treherne JE (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293:466–467

    Article  Google Scholar 

  • Freeland WJ, Janzen DH (1974) Strategies in herbivory by mammals: the role of plant secondary compounds. Am Nat 108:269–289

    Article  CAS  Google Scholar 

  • Friberg N, Skriver J, Larsen SE, Pedersen ML, Buffangi A (2010) Stream macroinvertebrate occurrence along gradients in organic pollution and eutrophication. Freshw Biol 55:1405–1419

    Article  CAS  Google Scholar 

  • Gerken B, Sternberg K (1999) Die Exuvien Europäischer Libellen (Insecta, Odonata). The exuviae of European dragonflies. Arnika & Eisvogel, Höxter, Jena, p 354

    Google Scholar 

  • Gossner MM, Lade P, Rohland A, Sichardt N, Kahl T, Bauhus J, Weisser WW, Petermann JS (2016) Effects of management on aquatic tree-hole communities in temperate forests are mediated by detritus amount and water chemistry. J Anim Ecol 85:213–226. https://doi.org/10.1111/1365-2656.12437

    Article  PubMed  Google Scholar 

  • Glöer P (2002) Die süßwassergastropoden Nord- und Mitteleuropas. Zbirka Die tierwelt Deutschlands. Založba Conchbooks, Bonn, Bestimmungsschlüssel, Lebenweise, Verbreitung, p 327

    Google Scholar 

  • Graham SI, Kinnaird MF, O’Brien TG, Vågen TG, Winowiecki LA, Young TP, Young HS (2019) Effects of land-use change on community diversity and composition are highly variable among functional groups. Ecol Appl 29:e01973. https://doi.org/10.1002/eap.1973

    Article  PubMed  Google Scholar 

  • Guillon S, Thorel M, Flipo N, Oursel B, Claret C, Fayolle S, Bertrand C, Rapple B, Piegay H, Olivier J-M, Vienney A, Marmonier P, Franquet E (2019) Functional classification of artificial alluvial ponds driven by connectivity with the river: consequences for restoration. Ecol Eng 127:394–403. https://doi.org/10.1016/j.ecoleng.2018.12.018

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org Accessed on 15 November 2019

  • Hagen EM, McCluney KE, Wyant KA, Soykan CU, Keller AC, Luttermoser KC, Holmes EJ, Moore JC, Sabo JL (2012) A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems. Oikos 121:1507–1515. https://doi.org/10.1111/j.1600-0706.2011.19666.x

    Article  Google Scholar 

  • Hansen JP, Wikström SA, Axemar H, Kautsky L (2011) Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquat Ecol 45:11–22. https://doi.org/10.1007/s10452-010-9319-7

    Article  CAS  Google Scholar 

  • Hering D, Carvalho L, Argiller C et al (2015) Managing aquatic ecosystems and water resources under multiple stress: an introduction to the MARS project. Sci Total Environ 503:10–21. https://doi.org/10.1016/j.scitotenv.2014.06.106

    Article  CAS  PubMed  Google Scholar 

  • Hertzog LR, Meyer ST, Weisser WW, Ebeling A (2016) Experimental manipulation in grassland plant diversity induces complex shifts in aboveground arthtropod diversity. PLoS ONE 11:e0148768. https://doi.org/10.1371/journal.pone.0148768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill MJ, Sayer CD, Wood PJ (2016) When is the best time to sample aquatic macroinvertebrates in ponds for biodiversity assessment? Environ Monit Assess 188:194–204. https://doi.org/10.1007/s10661-016-5178-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindk F (2001) Fotografický atlas mikroskopických siníc. Veda, Bratislava, pp 1–128

    Google Scholar 

  • Hines J, Van der Putten WH, De Deyn GB, Wagg C, Voigt W, Mulder C, Weisser WW, Engel J, Melian C, Scheu S, Birkhofer K, Ebeling A, Scheber C, Eisenhauer N (2015) Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. Adv Ecol Res 53:161–199. https://doi.org/10.1016/bs.aecr.2015.09.001

    Article  Google Scholar 

  • Hofrat W, Ottendorfer J (1983) Wasser und Abwasser, Index fur die Limnosaprobiat, Band 26, Hearausgegeben von der Bundesanstald fur Wasserergute in Wien – Kaisermuhlen, 175 p

  • Hogsden KL, Xenopoulos MA, Rusak JA (2009) Asymmetrical food web responses in trophic-level richness, biomass, and function following lake acidification. Aquat Ecol 43:591–606. https://doi.org/10.1007/s10452-008-9169-8

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. https://doi.org/10.1890/04-0922

    Article  Google Scholar 

  • Howard JK, Cuffey KM (2006) The functional role of native freshwater mussels in the fluvial benthic environment. Freshw Biol 51:460–474. https://doi.org/10.1111/j.1365-2427.2005.01507.x

    Article  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–147

    Article  Google Scholar 

  • Interlandi SJ, Kilham SS (2001) Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82:1270–1282

    Article  Google Scholar 

  • Irigoien X, Huisman J, Harris RP (2004) Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429:863–867. https://doi.org/10.1038/nature02593

    Article  CAS  PubMed  Google Scholar 

  • Jackson MC, Loewen CJ, Vinebrooke RD, Chimimba CT (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob Change Biol 22:180–189. https://doi.org/10.1111/gcb.13028

    Article  Google Scholar 

  • Jenačković DD, Lakušić D, Zlatković I, Jušković M, Ranđelović NV (2019) Emergent wetland vegetation data recording: does an optimal period exist? Appl Veg Sci 22:200–212. https://doi.org/10.1111/avsc.12419

    Article  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles an identification guide to freshwater and terrestrial algae. Cambridge University Press, New York, p 870

    Google Scholar 

  • Josifović M (Ed) (1970–1980) Flora SR Srbije, I–X. Beograd: SANU

  • Kazancı N, Ekingen P, Dügel M, Türkmen G (2015) Hirudinea (Annelida) species and their ecological preferences in some running waters and lakes. Int J Environ Sci Technol 12:1087–1096

    Article  Google Scholar 

  • Kiørboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86:311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x

    Article  PubMed  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcaless. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Berlin, p 548

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. In: Budel B, Krienitz L, Gärtner G, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Spektrum Akademischer Verlag, München, p 759

    Google Scholar 

  • Komárek J (2013) Cyanoprokaryota 3. Teil: Heterocytous Genera. In: Budel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Springer, Berlin, p 1130

    Chapter  Google Scholar 

  • Kosiba J, Wilk-Woźniak E, Krztoń W, Strzesak M, Pociecha A, Walusiak E, Pudaś K, Szarek-Gwiazda E (2017) The trophic network in shallow oxbow lakes exposed to cyanobacterial blooms. Microb Ecol 73:17–28. https://doi.org/10.1007/s00248-016-0833-6

    Article  CAS  PubMed  Google Scholar 

  • Koste W (1978) Rotatoria. Die Radiertiere Mitteleuropas. Uberordung Monogonta. 2. Auflage. I Textband, II Tafelband, 673 p. Gebrüder Borntraeger, Berlin – Stutgart, 645 p

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1, Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süβwasserflora von Mitteleuropa 2/1. Gustav Fischer Verlag, Jena, p 876

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/2. Gustav Fischer Verlag, Stuttgart, Jena, p 596

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/3. Gustav Fischer Verlag, Stuttgart, Jena, p 576

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gartner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/4. Gustav Fischer Verlag, New York, p 437

    Google Scholar 

  • Kratina P, Greig HS, Thompson PL, Carvalho-Pereira TSA, Shurin JB (2012) Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93:1421–1430

    Article  PubMed  Google Scholar 

  • Kundu S, Vassanda Coumar S, Rajendiran S, Rao A, Subba Rao A (2015) Phosphates from detergents and eutrophication of surface water ecosystem in India. Curr Sci India 108:1320–1325

    CAS  Google Scholar 

  • Larson CA, Belovsky GE (2013) Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. J Plankton Res 35:1154–1166. https://doi.org/10.1093/plankt/fbt053

    Article  Google Scholar 

  • Lefcheck JS (2016) PiecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579. https://doi.org/10.1111/2041-210X.12512

    Article  Google Scholar 

  • Leibold MA (1999) Biodiversity and nutrient enrichment in pond plankton communities. Evol Ecol Res 1:73–95

    Google Scholar 

  • Mandaville SM (2002) Benthic macroinvertebrates in freshwaters- taxa tolerance values, metrics, and protocols. Project H-1, Soil & Water Conservation Society of Metro Halifax. xviii, 48 p, Appendices A–B, 120 p

  • Malmqvist B, Wotton RS, Zhang Y (2001) Suspension feeders transform massive amounts of seston in large northern rivers. Oikos 92:35–43. https://doi.org/10.1034/j.1600-0706.2001.920105.x

    Article  Google Scholar 

  • Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, Iowa

    Google Scholar 

  • Miltner RJ, Rankin ET (1998) Primary nutrients and the biotic integrity of rivers and streams. Freshw Biol 40:145–158. https://doi.org/10.1046/j.1365-2427.1998.00324.x

    Article  CAS  Google Scholar 

  • Miranda LE, Andrews CS, Kröger R (2014) Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes. Aquat Sci 76:41–50. https://doi.org/10.1007/s00027-013-0310-y

    Article  CAS  Google Scholar 

  • Moller Pillot HKM (1984a) De larven der Nederlandse Chironomidae (Diptera). 1A: Inleiding, Tanypodinae en Chironomini, St. E.I.S Nederland, Leiden

  • Moller Pillot HKM (1984b) De larven der Nederlandse Chironomidae (Diptera). 1B: Orthocladiinae sensu lato. St. E.I.S. Nederland, Leiden

  • Moller Pillot HKM (2009) Chironomidae larvae. KNNV Publishing, Zeist, Biology and Ecology of Chironomini

    Book  Google Scholar 

  • Nesemann H, Reischütz PL (1995) Gastropoda. In: Moog O (Ed): Fauna Aquatica Austriaca, Lieferungen 1995, 2002. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien

  • Nevalainen L, Luoto TP (2017) Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients. Funct Ecol 31:488–498. https://doi.org/10.1111/1365-2435.12737

    Article  Google Scholar 

  • Nilsson A (1997) Aquatic insects of North Europe. a taxonomic handbook odonata diptera, vol 2. Apollo Books, Stenstrup

    Google Scholar 

  • Oertli B, Parris KM (2019) Review: toward management of urban ponds for freshwater biodiversity. Ecosphere 10:e02810. https://doi.org/10.1002/ecs2.2810

    Article  Google Scholar 

  • Olson MH, Mittelbach GG, Osenberg CW (1995) Competition between predator and prey: resource-based mechanisms and implications for stage-structured dynamics. Ecology 76:1758–1771. https://doi.org/10.2307/1940708

    Article  Google Scholar 

  • Ormerod SJ, Dobson M, Hildrew AG, Townsend C (2010) Multiple stressors in freshwater ecosystems. Freshw Biol 55:1–4. https://doi.org/10.1111/j.1365-2427.2009.02395.x

    Article  Google Scholar 

  • Örnólfsdóttir EB, Lumsden SE, Pinckney JL (2004) Nutrient pulsing as a regulator of phytoplankton abundance and community composition in Galveston Bay, Texas. J Exp Mar Biol Ecol 303:197–220

    Article  Google Scholar 

  • Orr JA, Vinebrooke RD, Jackson MC, Kroeker KJ, Kordas RL, Mantyka-Pringle C, Van den Brink PJ, De Laender F, Stoks R, Holmstrup M, Matthaei CD, Monk WA, Penk MR, Leuzinger S, Schäfer RB, Piggott JJ (2020) Towards a unified study of multiple stressors: divisions and common goals across research disciplines. P Roy Soc B-Biol Sci 287:20200421. https://doi.org/10.1098/rspb.2020.0421

    Article  Google Scholar 

  • Östman Ö, Eklöf J, Eriksson BK, Olsson J, Moksnes P-O, Bergström U (2016) Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. J Appl Ecol 53:1138–1147

    Article  Google Scholar 

  • Persson L (1988) Asymmetries in competitive and predatory interactions in fish populations. In: Ebenman B, Persson L (eds) Size-structured populations. Springer, Berlin. https://doi.org/10.1007/978-3-642-74001-5_14

    Chapter  Google Scholar 

  • Petchey OL, Downing AL, Mittelbach GG, Persson L, Steiner CF, Warren PH, Woodward G (2004) Species loss and the structure and functioning of multitrophic aquatic ecosystems. Oikos 104:467–478. https://doi.org/10.1111/j.0030-1299.2004.13257.x

    Article  Google Scholar 

  • Petkovski TK (1983) Fauna of Macedonia V: Kalanoids – Calanoida (Crustacea – Copepoda), Macedonian Museum of Natural History, Skopje, 182 p (in Macedonian)

  • Pfleger V (2000) A field guide in colour to molluscs. Silverdale Books, UK, p 216

    Google Scholar 

  • Porter-Goff ER, Boylen CW, Nierzwicki-Bauer SA (2010) Periphyton dynamics along a stream with a gradient of human impact. J Freshw Ecol 25:385–394. https://doi.org/10.1080/02705060.2010.9664381

    Article  CAS  Google Scholar 

  • Ptacnik R, Solimini AG, Andersen T, Tamminen T, Brettum P, Lepistö L, Willén E, Rekolainen S (2008) Diversity predicts stability and resource use efficiency in natural phytoplankton communities. P Natl Acad Sci USA 105:5134–5138

    Article  CAS  Google Scholar 

  • Puliam HR (1975) Diet optimization with nutrient constraints. Am Nat 109:765–768

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Raebel EM, Merckx T, Feber RE, Riordan P, MacDonald DW, Thompson DJ (2011) Identifying high-quality pond habitats for Odonata in lowland England: implications for agri-environment schemes. Insect Conserv Diver 5:422–432

    Article  Google Scholar 

  • Raffaelli D (2004) How extinction patterns affect ecosystems. Science 306:1141–1142. https://doi.org/10.1126/science.1106365

    Article  PubMed  Google Scholar 

  • Rawer-Jost C, Böhmer J, Blank J, Rahmann H (2000) Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422(423):225–232

    Article  Google Scholar 

  • Rodrigues LC, Simões NR, Bovo-Scomparin VM, Jati S, Santana NF, Roberto MC, Train S (2015) Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain. Ecol Indic 48:334–341

    Article  CAS  Google Scholar 

  • Rosset V, Angélibert S, Arthaud F, Bornette G, Robin J, Wezel A, Vallod D, Oertli B (2014) Is eutrophication really a major impairment for small waterbody biodiversity? J Appl Ecol 51:415–425

    Article  Google Scholar 

  • Rossaro B, Lencioni V (2015) A key to larvae of Diamesa Meigen, 1835 (Diptera, Chironomidae), well known as adult males and pupae from Alps (Europe). J Entomol Acarol Res 47:123–138

    Article  Google Scholar 

  • Root (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Rügner H, Schwientek M, Beckingham B, Kuch B, Grathwohl P (2013) Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environ Earth Sci 69:373–380. https://doi.org/10.1007/s12665-013-2307-1n

    Article  Google Scholar 

  • Rylov VM (1948) Crustaceans, Freshwater Cyclopoida, Fauna of the USSR, vol 3. Nauka, Moscow-Leningrad, p 318 (in Russian)

    Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    Article  CAS  PubMed  Google Scholar 

  • Schmedtje U, Colling M (1996) Ökologische Typisierung der aquatischen Makrofauna. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 4/96, 543 p

  • Schmid P (1993) A key to the larval chironomidae and their instars from Austrian Danube region streams and rivers part 1 diamesinae prodiamesinae and orthocladiinae. Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, Wien

    Google Scholar 

  • Shipley B (2000) A new inferential test for path models based on directed acyclic graphs. Struct Equ Model 7:206–218. https://doi.org/10.1207/S15328007SEM0702

    Article  Google Scholar 

  • Shukla JB, Misra AK, Chandra P (2008) Mathematical modeling and analysis of the depletion of dissolved oxygen in eutrophied water bodies affected by organic pollutants. Nonlinear Anal-Real 9:1851–1865

    Article  CAS  Google Scholar 

  • Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Phil Trans R Soc B 367:3008–3017. https://doi.org/10.1098/rstb.2012.0243

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonović P (2001) Ribe Srbije. Zavod za zaštitu prirode Srbije i Biološki fakultet Univerziteta u Beogradu, NNK International, Beograd

    Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and costal marine ecosystems. Environ Sci Pollut R 10:126–139

    Article  CAS  Google Scholar 

  • Smith M, Ceni A, Milic-Frayling N, Shneiderman B, Mendes Rodrigues E, Leskovec J, Dunne C (2010) NodeXL: a free and open network overview, discovery and exploration add-in for Excel. The Social Media Research Foundation: https://www.smrfoundation.org

  • Sonnenholzner JI, Ladah LB, Lafferty KD (2009) Cascading effects of fishing on galapagos rocky reef communities: reanalysis using corrected data. Mar Ecol Prog Ser 375:209–218. https://doi.org/10.3354/meps07890

    Article  Google Scholar 

  • Soliveres S, van der Plas F, Manning P et al (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456–459. https://doi.org/10.1038/nature19092

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529. https://doi.org/10.1086/286187

    Article  CAS  PubMed  Google Scholar 

  • Stojković M, Milošević D, Simić S, Simić V (2014) Using a fish-based model to assess the ecological status of lotic systems in Serbia. Water Res Manag 28:4615–4629. https://doi.org/10.1007/s11269-014-0762-4

    Article  Google Scholar 

  • Stamenković O, Stojković Piperac M, Milošević D, Buzhdygan OY, Petrović A, Jenačković D, Đurđević A, Čerba D, Vlaičević B, Nikolić D, Simić V (2019) Anthropogenic pressure explains variations in the biodiversity of pond communities along environmental gradients: a case study in south-eastern Serbia. Hydrobiologia 838:65–83. https://doi.org/10.1007/s10750-019-03978-4

    Article  CAS  Google Scholar 

  • Šramek-Hušek R, Straškraba M, Brtek J (1962) Lupenorošci - Branchiopoda. Fauna ČSR, svazek 15, Vydalo Nakladetestvi Československe akademie ved, Praha, 470 p

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146

    Article  Google Scholar 

  • Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236. https://doi.org/10.4322/actalb.02202011

    Article  Google Scholar 

  • Timm T (1999) Eestirõngusside (Annelida) määraja. Estonian Academy Publishers, Tartu-Tallinn, A Guide to the Estonian Annelidae

    Google Scholar 

  • Tõnno I, Agasild H, Kõiv T, Freiberg R, Nõges P, Nõges T (2016) Algal diet of small-bodied crustacean zooplankton in a cyanobacteria dominated eutrophic lake. PLoS ONE 11:e0154526. https://doi.org/10.1371/journal.pone.0154526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) (1964) Flora Europaea. Cambridge University Press, London

    Google Scholar 

  • Usio N, Nakagawa M, Aoki T, Higuchi S, Kadono Y, Akasaka M, Takamura N (2017) Effects of land use on trophic states and multi-taxonomic diversity in Japanese farm ponds. Agr Ecosyst Environ 247:205–215. https://doi.org/10.1016/j.agee.2017.06.043

    Article  Google Scholar 

  • Utermöhl H (1958) Zur vervolkmmung der quantitativen phytoplankton methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Vejřík L, Vejříková I, Blabolil P, Eloranta AP, Kočvara L, Peterka J, Sajdlová Z, Hoang The SC, Šmejkal M, Kiljunen M, Čech M (2017) European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability. Sci Rep 7:15970. https://doi.org/10.1038/s41598-017-16169-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl DH, Wolfe MD, Santucci VJ, Freedman JA (2011) Invasive carp and prey community composition disrupt trophic cascades in eutrophic ponds. Hydrobiologia 678:49–63. https://doi.org/10.1007/s10750-011-0820-3

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Waringer J, Graf W (1997) Atlas der Österreichischen Köcherfliegenlarven: unter Einschluss der angrenzenden Gebiete. Facultas Universitätsverlag, Wien, p 288

    Google Scholar 

  • Waters TF (1995) Sediment in streams: sources, biological effects and control. American Fisheries Society Monograph, Maryland

    Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater algae of North America: ecology and classification. Academic Press, USA, p 826

    Google Scholar 

  • Westoby M (1978) What are the biological bases of varied diets? Am Nat 112:627–631

    Article  Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341. https://doi.org/10.1016/S0006-3207(03)00153-8

    Article  Google Scholar 

  • Zettel H (1995) Heteroptera. In: Moog O (Ed): Fauna Aquatica Austriaca, Lieferungen 1995, 2002. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien

  • Živković A (1987) Fauna Rotatoria jugoslovenskog dela Dunava i voda njegovog plavnog područja kod Apatina. Otisak iz Zbornika radova o fauni SR Srbije, IV, SANU, Odeljenje prirodno-matematičkih nauka, Beograd, pp 7–115

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Serbian Ministry of Education, Science and Technological Development (contract number 451-03-68/2020-14) and a bilateral cooperation scientific project between Serbia and Croatia funded by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education. We thank Sonja Dix (UK) for the final English corrections.

Funding

The funding was provided by the Serbian Ministry of Education, Science and Technological Development and Croatian Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Contributions

OYB, OS, VS, MSP, and DM designed the study and developed the analytical procedure. All authors except OYB contributed data. OYB performed statistical analysis and data visualization. OS wrote the original draft, and all authors substantially reviewed and edited the manuscript.

Corresponding author

Correspondence to Olivera Stamenković.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamenković, O., Simić, V., Stojković Piperac, M. et al. Direct, water-chemistry mediated, and cascading effects of human-impact intensification on multitrophic biodiversity in ponds. Aquat Ecol 55, 187–214 (2021). https://doi.org/10.1007/s10452-020-09822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-020-09822-5

Keywords

Navigation