Skip to main content
Log in

Influence of reductive soil disinfestation or biochar amendment on bacterial communities and their utilization of plant-derived carbon in the rhizosphere of tomato

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Root-associated microorganisms play an important role in plant nutrition and productivity. However, our understanding of how a plant-microbiome system responds to pre-planting soil management remains limited. Here, continuous labeling with 13CO2 gas combined with stable isotope probing (SIP) was applied to explore bacterial utilization of plant-derived carbon (C) in the tomato rhizosphere as affected by biochar amendment or reductive soil disinfestation (RSD). Our results showed that RSD treatment strongly shaped the soil bacterial community composition, while biochar soil amendment had little impact on the community in the rhizosphere of tomato. We observed that the bacterial community in the RSD treatment, which actively utilized plant-derived C, belonged to various phyla (i.e., Proteobacteria, Cyanobacteria, Verrucomicrobia, and Acidobacteria), while the genus Streptomyces (phylum Actinobacteria) was the main bacterial taxa that actively utilized plant-derived C in the biochar and control treatments. This study provides evidence that biochar application or RSD pre-planting soil management practices induced distinct bacterial utilization of plant-derived C, which may in turn regulate plant productivity in agricultural systems.

Key points

• Genus Streptomyces was the main bacterial group utilizing plant-derived carbon in both control and biochar treatments.

• Reductive soil disinfestation altered bacterial utilization of plant-derived carbon.

• Biochar did not alter the composition of the bacterial communities but had more labeled bacterial taxa utilizing plant-derived carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article/Supplementary Material.

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  Google Scholar 

  • Ahmed MA, Banfield CC, Sanaullah M, Gunina A, Dipopold MA (2018) Utlilisation of mucilage C by microbial communities under drought. Biol Fertil Soils 54:89–94

    Article  Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78

    Article  CAS  Google Scholar 

  • Angel R, Panholzl C, Gabriel R, Herbold C, Wanek W, Richter A, Eichorst SA, Woebken D (2018) Application of stable-isotope labelling techniques for the detection of active diazotrophs. Environ Microbiol 20:44–61

    Article  CAS  PubMed  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3:139–148

    Article  CAS  Google Scholar 

  • Badri D, Vivanco J (2009) Regulation and function of root exudate. Plant Cell Environ 6:666–681

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol) 57:289–300

    Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilbrone plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Butler DM, Rosskopf EN, Kokalis-Burelle N, Albano JP, Muramoto J, Shennan C (2012) Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 355:149–165

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10:265–268

    Article  CAS  PubMed  Google Scholar 

  • Citron CA, Barra L, Wink J, Dickschat JS (2015) Volatiles from nineteen recently genome sequenced actinomycetes. Org Biomol Chem 13:2673–2683

    Article  CAS  PubMed  Google Scholar 

  • Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias MP, Bastos MS, Xavier VB, Cassel E, Astarita LV, Santarém ER (2017) Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem 118:479–493

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 144:644–653

    Article  Google Scholar 

  • Ge T, Luo Y, He XH (2019) Quantitative and mechanistic insights into the key process in the rhizodeposited carbon stabilization, transformation and utlization of carbon, nitrogen, and phosphorus in paddy soil. Plant Soil 445:1–5

    Article  CAS  Google Scholar 

  • Gkarmiri K, Mahmood S, Ekblad A, Alström S, Högberg N, Finlay R (2017) Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Appl Environ Microbiol 83:e01938–e01917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Goud J-KC, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on Verticillium wilt. Plant Dis 88:688–694

    Article  PubMed  Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impcat on development and productivity of pepper and tomato growth in fertligated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M (2016) Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant Soil 407:203–215

    Article  CAS  Google Scholar 

  • Gu Y, Hou Y, Huang D, Hao Z, Wang X, Wei Z, Jousset A, Tan S, Xu D, Shen Q, Xu Y, Friman V (2017) Application of biochar reduces Ralstonia solanacearum infection via effecs on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant Soil 415:269–281

    Article  CAS  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannula SE, Morrien E, de Hollander M, van der Putten WH, van Veen JA, de Boer W (2017) Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J 11:2294–2304

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez M, Dumont MG, Yuan Q, Conrad R (2015) Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol 81:2244–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdeman LV, Moore W (1974) New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int J Syst Evol Microbiol 24:260–277

    Google Scholar 

  • Huang X, Liu L, Wen T, Zhu R, Zhang J, Cai Z (2015) Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiol Res 181:33–42

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Liu L, Wen T, Zhang J, Wang F, Cai Z (2016) Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol 100:5581–5593

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao J, Zhou X, Zhang J, Cai ZC (2019) Differential respones of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation. Geoderma 348:124–134

    Article  CAS  Google Scholar 

  • Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O (2017) Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci Rep 7:44382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL (1998) Organic acids in rhizosphere - a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Khabbaz SE, Zhang L, Cáceres LA, Sumarah M, Wang A, Abbasi PA (2015) Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot disease. Ann Appl Biol 166:456–471

    Article  CAS  Google Scholar 

  • Koechli C, Campbell AN, Pepe-Ranney C, Buckley DH (2019) Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable istope probing. Soil Biol Biochem 130:150–158

    Article  CAS  Google Scholar 

  • Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolton M, Graber ER, Tsehansky L, Elad Y, Cytryn E (2017) Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol 213:1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Elad Y, Tsechansky L, Abrol V, Lew B, Offenbach R, Graber ER (2018) Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection. J Sci Food Agric 98:495–503

    Article  CAS  PubMed  Google Scholar 

  • Labeda D, Goodfellow M, Brown R, Ward A, Lanoot B, Vanncanneyt M, Swings J, Kim S.-B, Liu Z, Chun J (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101: 73–104

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian T-X, Wang G-H, Yu Z-H, Li Y-S, Liu X-B, Zhang S-Q, Herbert SJ, Jin J (2017) Bacterial communities incorporating plant-derived carbon in the soybean rhizosphere in Mollisols that differ in soil organic carbon content. Appl Soil Ecol 119:375–383

    Article  Google Scholar 

  • Liao HK, Li YY, Yao HY (2019) Biochar amendment stimulates untlization of plant-derived carbon by soil bacterial in an intercropping system. Front Microbiol 10:1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Sun C, Liu X, He X, Liu M, Wu H, Tang C, Jin C, Zhang Y (2016) Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community. Sci Rep 6:19037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ge T, Zhu Z, Liu S, Luo Y, Li Y, Wang P, Gavrichkova O, Xu X, Wang J, Wu J, Guggenberger G, Kuzyakov Y (2019) Carbon input and allocation by rice into paddy soils: a review. Soil Biol Biochem 133:97–107

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  CAS  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM (2017) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Messiha NAS, van Diepeningen AD, Wenneker M, van Beuningen AR, Janse JD, Coenen TGC, Termorshuizen AJ, van Bruggen AHC, Blok WJ (2007) Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117:403–415

    Article  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Olaniyi JO, Akanbi WB, Adejumo TA, Akande OG (2010) Growth, fruit yield and nutritional quality of tomato varieties. Afr J Food Sci 4:398–402

    CAS  Google Scholar 

  • Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, Buckley DH (2016) Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J 10:287–298

    Article  CAS  PubMed  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effects on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • R Core Team (2013) Development Core. R: a language and environment for statistical computing. Vienna, Austria

  • Sarr PS, Ando Y, Nakamura S, Deshpande S, Subbarao GV (2020) Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Biol Fertil Soils 56:145–166

    Article  Google Scholar 

  • Schrempf H (2001) Recognition and degradation of chitin by Streptomycetes. Antonie Van Leeuwenhoek 79:285–289

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Ruan Y, Xue C, Zhong S, Li R, Shen Q (2015) Soils naturally suppresive to banana Fusarium wilt disease harbor unique bacterial communities. Plant Soil 393:21–33

    Article  CAS  Google Scholar 

  • Shinmura A (2000) Causal agent and control of root rot of welsh onion. PSJ Soil-borne Dis Workshop Rep 20:133–143

    Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212

    Article  Google Scholar 

  • Wang J, Chapman SJ, Yao H (2016) Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Appl Soil Ecol 101:11–19

    Article  Google Scholar 

  • Wang J, Chapman SJ, Ye Q, Yao H (2019) Limited effect of planting transgenic rice on the soil microbiome studied by continous 13CO2 labeling combined with high-throughput sequencing. Appl Microbiol Biotechnol 103:4217–4227

    Article  CAS  PubMed  Google Scholar 

  • Weber S, Stubner S, Conrad R (2001) Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67:1318–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman T, Pepe-Ranney C, Enders A, Koechli C, Campbell A, Buckley DH, Lehmann J (2016) Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. ISME J 10:2918–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2010) ggplot2: elegant graphics for data analysis. J Stat Softw 35:65–88

    Google Scholar 

  • Yao H, Thornton B, Paterson E (2012) Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biol Biochem 53:72–77

  • Yao H, Chapman SJ, Thornton B, Paterson E (2015) 13C PLFAs: a key to open the soil microbial black box? Plant Soil 392:3–15

  • Youngblut ND, Buckley DH (2014) Intra-genomic variation in G+C content and its implications for DNA stable isotope probing. Environ Microbiol Rep 6:767–775

    Article  CAS  PubMed  Google Scholar 

  • Youngblut ND, Barnett S, Buckley DH (2018) A modeling toolkit to predict accurary and aid design of DNA-SIP experiments. Front Microbiol 9:570

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Wang X, Chen L, Wang Z, Xia Y, Zhang Y, Wang H, Luo X, Xing B (2017) Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ 41:517–532

    Article  PubMed  Google Scholar 

  • Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, Xie J, Van Nostrand JD, He Z, Yang Y (2011) Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5:1303–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41525002, 41471206, 41601249, and 41877051), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020301), the Talents of Guizhou Science and Technology Cooperation Platform ([2017]5726-52), and the Ningbo Municipal Science and Technology Bureau (2015C10031).

Author information

Authors and Affiliations

Authors

Contributions

HL and HY conceived and designed the research. HL and YL conducted the experiments. HF contributed new reagents or analytical tools. HL and HY wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Huaiying Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Fan, H., Li, Y. et al. Influence of reductive soil disinfestation or biochar amendment on bacterial communities and their utilization of plant-derived carbon in the rhizosphere of tomato. Appl Microbiol Biotechnol 105, 815–825 (2021). https://doi.org/10.1007/s00253-020-11036-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11036-6

Keywords

Navigation