Skip to main content
Log in

Catabolite responsive elements as a strategy for the control of heterologous gene expression in lactobacilli

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Genes involved in the transport and catabolism of carbohydrates are usually controlled through the binding of the catabolite control protein A (CcpA) to the catabolite-responsive elements (cre) of target genes in Gram-positive bacteria. In this work, we show how the elimination of the cre sites in Lactobacillus casei BL23 promoters induced by sorbitol (PgutF), maltose (PmalL), and myo-inositol (PiolT) allowed the induction of gene expression in media supplemented with sorbitol, maltose, and myo-inositol, respectively, even in the presence of glucose. This was studied using plasmids encoding the anaerobic fluorescent protein evoglow-Pp1 as a reporter. In addition, gutF cre site was introduced into a bile inducible promoter (P16090) and into the constitutive promoter of the elongation factor P (PEf-P) of L. casei BL23. The existence of the cre site blocked gene expression in the P16090 inducible promoter in the presence of glucose, while it had no influence on the expression of the PEf-P constitutive one. These results demonstrated that the introduction or elimination of cre sites in inducible promoters allows the control and modification of their heterologous genetic expression, showing how the cre site, the transcriptional regulator, and CcpA interact to control gene expression in inducible genes.

Key points

• Cre sequences regulate gene expression in inducible promoters in L. casei BL23.

• Cre sites do not affect gene expression in constitutive promoters in L. casei BL23.

• Cre sequences could control heterologous genic expression in lactobacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcántara C, Zúñiga M (2012) Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. Microbiol 158(5):1206–1218

    Article  Google Scholar 

  • Alcántara C, Sarmiento-Rubiano LA, Monedero V, Deutscher J, Pérez-Martínez G, Yebra MJ (2008) Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM. Appl Environ Microbiol 74(18):5731–5740

    Article  Google Scholar 

  • Arqués JL, Rodríguez E, Langa S, Landete JM, Medina M (2015) Antimicrobial activity of lactic acid bacteria in dairy products and gut: effect on pathogens. BioMed Res Int 2015:584183. https://doi.org/10.1155/2015/584183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra JE, Yebra MJ, Monedero V (2015) An L-fucose operon in the probiotic Lactobacillus rhamnosus GG is involved in adaptation to gastrointestinal conditions. Appl Environ Microbiol 81(11):3880–3888

    Article  CAS  Google Scholar 

  • Chen C, Lu Y, Wang L, Yu H, Tian H (2018) CcpA-dependent carbon catabolite repression regulates fructooligosaccharides metabolism in Lactobacillus plantarum. Front Microbiol 9:1114

    Article  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031

    Article  CAS  Google Scholar 

  • Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154(1):1–9

    Article  CAS  Google Scholar 

  • Kruger S, Hecker M (1995) Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J Bacteriol 177(19):5590–5597

    Article  CAS  Google Scholar 

  • Landete JM (2016) Effector molecules and regulatory proteins: applications. Trends Biotechnol 34(10):777–780

    Article  CAS  Google Scholar 

  • Landete JM, García-Haro L, Blasco A, Manzanares P, Berbegal C, Monedero V, Zúñiga M (2010) Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol 76(1):84–95

    Article  CAS  Google Scholar 

  • Landete JM, Arqués JL, Peirotén A, Langa S, Medina M (2014a) An improved method for the electrotransformation of lactic acid bacteria: a comparative survey. J Microbiol Methods 105:130–133

    Article  CAS  Google Scholar 

  • Landete JM, Peirotén A, Rodríguez E, Margolles A, Medina M, Arqués JL (2014b) Anaerobic green fluorescent protein as a marker of Bifidobacterium strains. Int J Food Microbiol 175:6–13

    Article  CAS  Google Scholar 

  • Landete JM, Langa S, Revilla C, Margolles A, Medina M, Arqués JL (2015) Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 99:6865–6877

    Article  CAS  Google Scholar 

  • Landete JM, Peirotén A, Medina M, Arqués JL (2017) Short communication: labeling Listeria with anaerobic fluorescent protein for food safety studies. J Dairy Sci 100(1):113–117

    Article  CAS  Google Scholar 

  • Li L, Han NS (2018) Application of lactic acid bacteria for food biotechnology. In: Chang HN (ed) Emerging areas in bioengineering. Wiley, New York, pp 375–398

    Chapter  Google Scholar 

  • Martínez-Fernández JA, Bravo D, Peirotén A, Arqués JL, Landete JM (2019) Bile-induced promoters for gene expression in Lactobacillus strains. Appl Microbiol Biotechnol 103:3819–3827

    Article  Google Scholar 

  • McLeod A, Snipen L, Naterstad K, Axelsson L (2011) Global transcriptome response in Lactobacillus sakei during growth on ribose. BMC Microbiol 11:145

    Article  CAS  Google Scholar 

  • Monedero V, Yebra MJ, Poncet S, Deutscher J (2008) Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Res Microbiol 159(2):94–102

    Article  CAS  Google Scholar 

  • Montenegro-Rodríguez C, Peirotén A, Sánchez-Jiménez A, Arqués JL, Landete JM (2015) Analysis of gene expression of bifidobacteria using as the reporter an anaerobic fluorescent protein. Biotechnol Lett 37(7):1405–1413

    Article  Google Scholar 

  • Muscariello L, Marasco R, De Felice M, Sacco M (2001) The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl Environ Microbiol 67(7):2903–2907

    Article  CAS  Google Scholar 

  • Ogaugwu CE, Cheng Q, Fieck A, Hurwitz I, Durvasula R (2018) Characterization of a Lactococcus lactis promoter for heterologous protein production. Biotechnol Rep (Amst) 17:86–92

    Article  Google Scholar 

  • Peirotén A, Landete JM (2020) Natural and engineered promoters for gene expression in Lactobacillus species. Appl Environ Microbiol 104:3797–3805

    Google Scholar 

  • Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215

    Article  CAS  Google Scholar 

  • Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a gram-positive solution. Antonie van Leeuwenhoek 82(1-4):59–71

    Article  CAS  Google Scholar 

  • Yang Y, Zhang L, Huang H, Yang C, Yang S, Gu Y, Jiang W (2017) A flexible binding site architecture provides new insights into CcpA global regulation in Gram-positive bacteria. MBio 8(1):e02004–e02016

    Article  CAS  Google Scholar 

  • Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V (2007) Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol 73(12):3850–3858

    Article  CAS  Google Scholar 

  • Zúñiga M, Champomier-Verges M, Zagorec M, Pérez-Martínez G (1998) Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J Bacteriol 180(16):4154–4159

    Article  Google Scholar 

Download references

Funding

This work was supported by RTA2017-00002-00-00 project from the Ministry of Economy and Competitiveness (Spain).

Author information

Authors and Affiliations

Authors

Contributions

JML conceived and designed research and conducted experiments. JML and SL analyzed the data. JML, SL, AP, and JLA interpreted the data and wrote the manuscript. All authors read and approved the submitted manuscript.

Corresponding author

Correspondence to Susana Langa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1

(PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langa, S., Peirotén, Á., Arqués, J.L. et al. Catabolite responsive elements as a strategy for the control of heterologous gene expression in lactobacilli. Appl Microbiol Biotechnol 105, 225–233 (2021). https://doi.org/10.1007/s00253-020-11010-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11010-2

Keywords

Navigation