Skip to main content
Log in

On the logic performance of bulk junctionless FinFETs

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a one-to-one comparison of the logic performance is made between CMOS circuits built with bulk junctionless (JL) FinFETs and that with SOI JL FinFETs for three different technology nodes as per the ITRS roadmap. For such comparison: (i) the rise time and fall time are evaluated from the transient analysis of a CMOS inverter,(ii) the propagation delay per stage for a three-stage ring oscillator is estimated from its frequency of oscillation, and (iii) the static noise margin of a 6 T SRAM cell is evaluated from its butterfly plot. A three-dimensional numerical device and mixed-mode circuit simulator is used for the performance estimation. CMOS circuits implemented with bulk JL devices are found to have comparable logic performance with their SOI JL counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Colinge, J. P., Lee, C. W., Afzalian, A., Akhavan, N. D., Yan, R., Ferain, I., et al. (2010). Nanowire transistors without junctions. Nature Nanotechnology, 5(3), 225–229.

    Article  Google Scholar 

  2. Rudenko, T., Nazarov, A., Ferain, I., Das, S., Yu, R., Barraud, S., & Razavi, P. (2012). Mobility enhancement effect in heavily doped junctionless nanowire silicon-on-insulator metal-oxide-semiconductor field-effect transistors. Applied. Physical. Letter, 101(21), 213502.

    Article  Google Scholar 

  3. Colinge, J. P., Kranti, A., Yan, R., Lee, C. W., Ferain, I., Yu, R., & Razavi, P. (2011). Junctionless nanowire transistor (JNT): Properties and design guidelines. Solid-State Electronics, 65, 33–37.

    Article  Google Scholar 

  4. Kranti, A., Yan, R., Lee, C. W., Ferain, I., Yu, R., Akhavan, N. D., Colinge, J. P. (2010). Junctionless nanowire transistor (JNT): Properties and design guidelines. In 2010 Proceedings of the European Solid State Device Research Conference (pp. 357-360). IEEE..

  5. Gundapaneni, S., Ganguly, S., & Kottantharayil, A. (2011). Bulk planar junctionless transistor (BPJLT): An attractive device alternative for scaling. IEEE Electron device letters, 32(3), 261–263.

    Article  Google Scholar 

  6. Gundapaneni, S., Ganguly, S., & Kottantharayil, A. (2011). Enhanced electrostatic integrity of short channel junctionless transistor with high-κ spacers. IEEE Electron Device Letters, 32(10), 1325–1327.

    Article  Google Scholar 

  7. Lee, C. W., Nazarov, A. N., Ferain, I., Akhavan, N. D., Yan, R., Razavi, P., et al. (2010). Low subthreshold slope in junctionless multigate transistors. Applied. Physics. Letters, 96(10), 102106.

    Article  Google Scholar 

  8. Colinge, J. P., Lee, C. W., Ferain, I., Akhavan, N. D., Yan, R., Razavi, P., et al. (2010). Reduced electric field in junctionless transistors. Applied Physics Letters, 96(7), 073510.

    Article  Google Scholar 

  9. Lee, C. W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N. D., Razavi, P., & Colinge, J. P. (2010). Performance estimation of junctionless multigate transistors. Solid State Electronics, 54(2), 97–103.

    Article  Google Scholar 

  10. Doria, R. T., Pavanello, M. A., Trevisoli, R. D., de Souza, M., Lee, C. W., Ferain, I., & Kranti, A. (2011). Junctionless multiple-gate transistors for analog applications. IEEE Transactions on Electron Devices, 58(8), 2511–2519.

    Article  Google Scholar 

  11. Guin, S., Sil, M., & Mallik, A. (2017). Comparison of logic performance of cmos circuits implemented with junctionless and inversion-mode finFETs. IEEE Transactions on Electron Devices, 64(3), 953–959.

    Article  Google Scholar 

  12. Jurczak, M., Collaert, N., Veloso, A., Hoffmann, T.,Biesemans, S. (2009) Review of FINFET technology, in Proceeding. IEEE International SOI Conference (pp. 1–4).

  13. Bresson, N., Cristoloveanu, S., Mazure, C., Letertre, F., & Iwai, H. (2005). Integration of buried insulators with high thermal conductivity in SOI MOSFETs: Thermal properties and short channel effects. Solid-State Electron., 49, 1522–1528.

    Article  Google Scholar 

  14. Manoj, C. R., Nagpal, M., Varghese, D., & Rao, V. R. (2008). Device design and optimization considerations for bulk FinFETs. IEEE Transactions on Electron Devices, 55(2), 609–615.

    Article  Google Scholar 

  15. Han, M.-H., Chang, C.-Y., Chen, H.-B., Wu, J.-J., Cheng, Y.-C., & Wu, Y.-C. (2013). Performance comparison between bulk and soi junctionless transistors. IEEE Electron Device Letters, 34(2), 169–171.

    Article  Google Scholar 

  16. International Technology Roadmap for Semiconductors (2013) Semicond Indian Association San Jose, CA

  17. De Jaeger, B., Nicholas, G., Brunco, D. P., Eneman, G., Meuris, M., & Heyns, M. M. (2007, September). High performance high-k/metal gate Ge pMOSFETs with gate lengths down to 125 nm and halo implant. In ESSDERC 2007-37th European Solid State Device Research Conference (pp. 462-465). IEEE.

  18. Synopsys, S. D. (2013). User Guide. Mountain View: CA.

    Google Scholar 

  19. Lombardi, C., Manzini, S., Saporito, A., & Vanzi, M. (1988). A physically based mobility model for numerical simulation of nonplanar devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(11), 1164–1171.

    Article  Google Scholar 

  20. Masetti, G., Severi, M., & Solmi, S. (1983). Modeling of carrier mobility against carrierconcentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Transactions on Electron Devices, 30(7), 764–769.

    Article  Google Scholar 

  21. Colinge, J. P., Baie, X., & Bayot, V. (1994). Evidence of two-dimensional carrier confinement in thin n-channel SOI gate-all-around (GAA) devices. IEEE Transactions on Electron Devices, 15(6), 193–195.

    Article  Google Scholar 

  22. Ancona, M. G., & Tiersten, H. F. (1987). Macroscopic physics of the silicon inversion layer. Physical Review B, 35(15), 7959.

    Article  Google Scholar 

  23. Ancona, M. G., & Iafrate, G. J. (1989). Quantum correction to the equation of state of an electron gas in a semiconductor. Physical Review B, 39(13), 9536.

    Article  Google Scholar 

  24. Rabaey, J. M., Chandrakasan, A., & Nicolic, B. (2003). Digital Integrated Circuits (2nd ed.). London: Pearson.

    Google Scholar 

  25. Dessai, G., & Gildenblat, G. (2011). Inclusion of the accumulation region in the compact models of bulk and SOI FinFETs. IEEE transactions on electron devices, 58(8), 2644–2651.

    Article  Google Scholar 

  26. Guo, Z., Balasubramanian, S., Zlatanovici, R., King, T. J., & Nikolić, B. (2005, August). FinFET-based SRAM design. In Proceedings of the 2005 international symposium on Low power electronics and design (pp. 2-7).

  27. Seevinck, E., List, F. J., & Lohstroh, J. (1987). Static-noise margin analysis of MOS SRAM cells. IEEE Journal of Solid-State Circuits, 22(5), 748–754.

    Article  Google Scholar 

Download references

Acknowledgements

Mrs. Monali Sil thanks the Human Research Development group (HRDG), Government of India, for funding the senior research fellowship under reference 09/028(1027)/2018-EMR-I through Council of Scientific and Industrial Research (CSIR). The authors also thank the University of Calcutta for providing the necessary infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monali Sil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, M., Mallik, A. On the logic performance of bulk junctionless FinFETs. Analog Integr Circ Sig Process 106, 467–472 (2021). https://doi.org/10.1007/s10470-020-01782-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01782-y

Keywords

Navigation