Skip to main content
Log in

Design and fabrication of a microstrip lowpass filter with wide tuning range as harmonic suppression with application in Wilkinson power divider

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, a tunable lowpass filter (LPF) with a hexagonal stepped impedance resonator and multi open stubs is designed. The − 3 dB cut-off frequency for the proposed LPF is 2.2 GHz. Insertion loss (IL) and return loss (RL) in the passband zone are 0.3 dB and 15 dB, respectively. The frequency response slope (roll-off rate) for the proposed LPF is very sharp and equal to 142.4 dB/GHz. The tuning range of − 3 dB cut-off frequency for the presented LPF is very wide and equal to 2.7 GHz [from 0.5 to 3.2 GHz (84.3%)]. To achieve the desired structure and harmonics suppression, a conventional power divider was designed initially, then the transmission lines (with length of λ/4) were replaced with two LPFs. The isolation, IL, and input RL for the proposed modified Wilkinson power divider are better than 20.1 dB, 3.1 dB and 21.2 dB, respectively, at operating frequency of 1.8 GHz (GSM band). The proposed modified Wilkinson power divider eliminates the 2nd–11th harmonics with high levels of attenuation. The feature selective validation method depicts that the simulation and measurement results for the proposed LPF are in good agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Danaeian, M., Moznebi, A.-R., & Afrooz, K. (2020). Compact narrow band-pass filter based on alternate right–left handed transmission line concept. Analog Integrated Circuits and Signal Processing, 103, 315–323.

    Article  Google Scholar 

  2. Moitra, S., Dey, R., & Bhowmik, P. S. (2019). Design and band coalition of dual band microstrip filter using DGS, coupled line structures and series inductive metallic vias. Analog Integrated Circuits and Signal Processing, 101, 77–88.

    Article  Google Scholar 

  3. Huang, W., Ren, Y., Hao, H., & Ruan, W. (2018). Miniaturized fifth-order lowpass filters based on structure of artificial transmission line unit. Electromagnetics., 38(4), 249–259.

    Article  Google Scholar 

  4. Li, Q., Zhang, Y., & Fan, Y. (2015). Compact ultra-wide stopband low pass filter using multimode resonators. Electronics Letters, 51(14), 1084–1085.

    Article  MathSciNet  Google Scholar 

  5. Sen, S., & Moyra, T. (2019). Compact low-cost microstrip lowpass filter with sharp roll-off and wide attenuation band. Int J RF Microw Comput Aid Eng., 29(11), e21917.

    Article  Google Scholar 

  6. Chen, F.-C., Hu, H.-T., Qiu, J.-M., & Chu, Q.-X. (2015). High-Selectivity Low-Pass Filters with Ultrawide Stopband Based on Defected Ground Structures. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(9), 1313–1319.

    Article  Google Scholar 

  7. Rajput, A., Pate, K., & Birwal, A. (2017). Compact microstrip low pass filter design using U-shaped folded high-impedance line. Microw. Opt. Technol. Lett, 60(7), 1812–1815.

    Article  Google Scholar 

  8. Vala, A., Patel, A., Goswami, R., & Mahant, K. (2016). Defected ground structure based wideband microstrip low-pass filter for wireless communication. Microw. Opt. Technol. Lett, 59(5), 993–996.

    Article  Google Scholar 

  9. Boutejdar, A., Omar, A., & Burte, E. (2014). High-performance wide stop band low-pass filter using a vertically coupled DGS-DMS-resonators and interdigital capacitor. Microw. Opt. Technol. Lett, 56(1), 87–91.

    Article  Google Scholar 

  10. Lan, S.-W., Weng, M.-H., Chang, S.-J., & Hung, C.-Y. (2015). A compact low-pass filter with ultrabroad stopband characteristics. Microw. Opt. Technol. Lett, 57(12), 2800–2803.

    Article  Google Scholar 

  11. Salehi, A., Moloudian, G., & Setoudeh, F. (2019). Design, Simulation and Manufacturing Microstrip Low-pass Filter by Wide Stopband and Changing Fast Situation from Passing State to Stopping. IETE Journal of Research, 65(4), 487–493.

    Article  Google Scholar 

  12. Moloudian, G., Dousti, M., & Ebrahimi, A. (2018). Design and fabrication of a compact microstrip low-pass filter with ultra-wide stopband and sharp roll-off-rate. Journal of Electromagnetic Waves and Applications, 32(6), 713–725.

    Article  Google Scholar 

  13. Rayatzadeh, S., & Moloudian, G. (2019). Design and fabrication of a miniaturized lowpass-bandpass diplexer with wide tuning range and high isolation. Journal of Electromagnetic Waves and Applications., 33(14), 1874–1889.

    Article  Google Scholar 

  14. Moloudian, G., Bahrami, S., & Hashmi, R. M. (2020). A microstrip lowpass filter with wide tuning range and sharp roll-off response. IEEE Transactions on Circuits and Systems II: Express Briefs. (Arely Access).

  15. Cai, C., Wang, J., & Zhang, G. (2015). Tunable microstrip lowpass filter with compact size and ultra-wide stopband’. Electronics Letters, 51(19), 1514–1516.

    Article  Google Scholar 

  16. Zhang, T., Cai, Z., Yang, Y., Bao, J., & Wang, Y. (2017). Compact tunable lowpass filter with sharp roll-off and low insertion loss. Microw. Opt. Technol. Lett., 59(10), 2619–2623.

    Article  Google Scholar 

  17. Moloudian, G., & Bahrami, S. (2019). Design and fabrication of a continuous tunable microstrip lowpass filter with wide stopband and sharp response. International Journal of RF and Microwave Computer-Aided Engineering, 29(8), e21759.

    Article  Google Scholar 

  18. Moloudian, G., & Dousti, M. (2018). Design and fabrication of a compact microstrip lowpass-bandpass diplexer with high isolation for telecommunication applications. International Journal of RF and Microwave Computer-Aided Engineering, 28(5), e21248.

    Article  Google Scholar 

  19. Choe, W., & Jeong, J. (2016). N-Way Unequal Wilkinson Power Divider with Physical Output Port Separation. IEEE Microwave and Wireless Components Letters, 26(4), 243–245.

    Article  Google Scholar 

  20. Heydari, M., & Roshani, S. (2017). Miniaturised unequal Wilkinson power divider using lumped component elements. Electronics Letters, 53(16), 1117–1119.

    Article  Google Scholar 

  21. Zhang, F., & Li, C. F. (2008). Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic rejection. Electronics Letters, 44(6), 422–424.

    Article  Google Scholar 

  22. Cheng, K.-K. M., & Ip, W.-C. (2010). A Novel Power Divider Design with Enhanced Spurious Suppression and Simple Structure. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3903–3908.

    Google Scholar 

  23. Gu, J., & Sun, X. (2005). Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit. IEEE Microwave and Wireless Components Letters, 15(12), 880–882.

    Article  Google Scholar 

  24. Li, J.-L., Wang, H.-Z., Wang, J.-P., Gao, S.-S., Yang, X.-S., & Shao, W. (2016). Miniaturized wilkinson power dividers with harmonic suppressions. Electromagnetics., 36(3), 157–166.

    Article  Google Scholar 

  25. Pouryavar, R., Shama, F., & Imani, M. A. (2018). A miniaturized microstrip Wilkinson power divider with harmonics suppression using radial/rectangular-shaped resonators. Electromagnetics., 38(2), 113–132.

    Article  Google Scholar 

  26. Moloudian, G., Miri-Rostami, S. R., & Björninen, T. (2020). Modified Wilkinsonpower divider with harmonics suppression andcompact size for GSM applications. International Journal of RF and Microwave Computer-Aided Engineering, 30(7), e22209.

    Article  Google Scholar 

  27. Munirathinam, S., & Balachandran, A. (2020). Compact wideband band-stop filter using stepped complementary split ring resonators. Analog Integrated Circuits and Signal Processing, 102, 363–367. https://doi.org/10.1007/s10470-019-01580-1.

    Article  Google Scholar 

  28. Orlandi, A., Duffy, A. P., Archambeault, B., Antonini, G., Coleby, D. E., & Connor, S. (2006). Feature selective validation (FSV) for validation of computational electromagnetics (CEM): Part II-Assessment of FSV performance. IEEE Transaction on Electromagnetic Compatibility, 48(3), 460–467.

    Article  Google Scholar 

  29. Duffy, A. P., Martin, A. J., Orlandi, A., Antonini, G., Benson, T. M., & Woolfson, M. (2006). Feature selective validation (FSV) for validation of computational electromagnetics (CEM): Part I-The FSV method. IEEE Transaction on Electromagnetic Compatibility, 48(3), 449–459.

    Article  Google Scholar 

  30. Hong, J.-S., & Lancaster, M. J. (2001). Microstrip filters for RF/microwave applications. New York: Wiley.

    Book  Google Scholar 

  31. Moloudian, G., Dousti, M., & Ebrahimi, A. (2018). Design and fabrication of a tunable microstrip lowpass-bandpass diplexer for telecommunication applications. Microwave Opt. Technol. Lett., 60(3), 754–759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroush Karimi-khorrami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi-khorrami, S., Moloudian, G. Design and fabrication of a microstrip lowpass filter with wide tuning range as harmonic suppression with application in Wilkinson power divider. Analog Integr Circ Sig Process 107, 155–163 (2021). https://doi.org/10.1007/s10470-020-01752-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01752-4

Keywords

Navigation