Skip to main content

Advertisement

Log in

Spatial distribution of atmospheric bioaerosols in Beijing, Hangzhou and Wuhan, China

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Exposure to bioaerosols can have adverse effects on human health and contribute to allergies, asthma, infectious diseases and pulmonary conditions. Bioaerosols are airborne particles of microbial, animal and plant origin. Animal- and plant-derived particles, which may disperse over long distances, are being increasingly addressed by environmental studies in addition to microorganisms. In this study, air samples were collected in various planned areas of three cities in China (Beijing, Hangzhou and Wuhan) using a new liquid-based sampler. Animal, plant and bacterial components were quantified according to the expression levels of housekeeping genes via real-time PCR and analysis of cycle threshold (Ct) values. The level of animal-derived particles in the air of Hangzhou was higher than those in the other two cities. More bacterial particles than animal or plant particles were detected in the air in Beijing compared with other cities. We also found a negative correlation between the bacterial content of bioaerosols and relative humidity and a positive correlation between bacterial content and temperature. By contrast, bioaerosol animal content was positively correlated with relative humidity and negatively correlated with temperature. In summary, high levels of bacterial particles were detected in atmospheric samples in China, although the lower concentrations of animal- and plant-derived particles should not be ignored. These data may provide important evidence for structural analyses of animal- and plant-derived bioaerosols as well as for risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bertolini, V., Gandolfi, I., Ambrosini, R., Bestetti, G., Innocente, E., Rampazzo, G., et al. (2013). Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotechnology, 97(14), 6561–6570.

    CAS  Google Scholar 

  • Bowers, R. M., Clements, N., Emerson, J. B., Wiedinmyer, C., Hannigan, M. P., & Fierer, N. (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science and Technology, 47(21), 12097–12106.

    CAS  Google Scholar 

  • Bowers, R. M., McLetchie, S., Knight, R., & Fierer, N. (2011). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME journal, 5(4), 601–612.

    CAS  Google Scholar 

  • Bragoszewska, E., & Pastuszka, J. S. (2018). Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia, 34(2), 241–255.

    Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 299–304.

    CAS  Google Scholar 

  • Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., et al. (2014). Inhalable microorganisms in Beijing’s PM2.5 and pollutants during a severe smog event. Environmental Science and Technology, 48(3), 1499–1507.

    CAS  Google Scholar 

  • Chien, Y. C., Chen, C. J., Lin, T. H., Chen, S. H., & Chien, Y. C. (2011). Characteristics of microbial aerosols released from chicken and swine feces. Journal of the Air and Waste Management Association, 61(8), 882–889.

    Google Scholar 

  • Cox, R. N., & Clark, R. P. (1973). Natural-convection flow about the human body. Revue Generale de Thermique, 12(133), 11–19.

    Google Scholar 

  • Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., AleksandrS, S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology, 64(1), 145–153.

    Google Scholar 

  • Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S. K., & Jaenicke, R. (2001). The ice nucleating ability of pollen: Part I: laboratory studies in deposition and condensation freezing modes. Atmospheric Research, 58(2), 75–87.

    Google Scholar 

  • Dybwad, M., Skogan, G., & Blatny, J. M. (2014). Temporal variability of the bioaerosol background at a subway station: Concentration level, size distribution, and diversity of airborne bacteria. Applied and environmental microbiology, 80(1), 257–270.

    CAS  Google Scholar 

  • Esmaeil, N., Gharagozloo, M., Rezaei, A., & Grunig, G. (2014). Dust events, pulmonary diseases and immune system. American Journal of Clinical and Experimental Immunology, 3(1), 20–29.

    Google Scholar 

  • Ferguson, R., Garcia-Alcega, S., Coulon, F., Dumbrell, A. J., Whitby, C., & Colbeck, I. (2019). Bioaerosol biomonitoring: Sampling optimization for molecular microbial ecology. Molecular ecology resources, 19(3), 672–690.

    CAS  Google Scholar 

  • Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., et al. (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atomospheric Research, 182, 346–376.

    Google Scholar 

  • Gabey, A. M., Vaitilingom, M., Freney, E., & Boulon, J. (2013). Observations of fluorescent and biological aerosol at a high-altitude site in central France. Atmospheric Chemistry and Physics, 13(15), 7415–7428.

    Google Scholar 

  • Gandolfi, I., Bertolini, V., Ambrosini, R., Bestetti, G., & Franzetti, A. (2013). Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 97(11), 4727–4736.

    CAS  Google Scholar 

  • Gao, M., Yan, X., Qiu, T. L., Han, M. L., & Wang, X. M. (2016). Variation of correlations between factors and culturable airborne bacteria and fungi. Atmospheric Environment, 128, 10–19.

    CAS  Google Scholar 

  • General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. (2003). Protocol of the real-time PCR for detecting genetically modified plants and their derived products. SN/T 1204—2003.

  • Goudie, A. S. (2014). Desert dust and human health disorders. Environment International, 63, 101–113.

    CAS  Google Scholar 

  • Gu, X., Yao, L., Wang, L., et al. (2014). PCR detection method of plant ingredient in frozen surimi. Chinese Fishery Quality and Standards, 4(2), 44–49.

    Google Scholar 

  • Haas, D., Galler, H., Luxner, J., & Zarfel, G. (2013). The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmospheric Environment, 65(2), 215–222.

    CAS  Google Scholar 

  • Hallar, A. G., Chirokova, G., McCubbin, I., Painter, T. H., Wiedinmyer, C., & Dodson, C. (2011). Atmospheric bioaerosols transported via dust storms in the western United States. Geophysical Research Letters, 38, 2–7.

    Google Scholar 

  • Harrison, R. M., Jones, A. M., Biggins, P. D., Pomeroy, N., Cox, C. S., & Kidd, S. P. (2005). Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 49(3), 167–178.

    Google Scholar 

  • Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings: Biological Sciences, 270(1512), 313–321.

    CAS  Google Scholar 

  • Helin, A., Sietiö, O. M., Heinonsalo, J., Bäck, J., Riekkola, M. L., & Parshintsev, J. (2017). Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: Seasonal patterns, abundances and size distributions. Atmospheric Chemistry and Physics, 17, 13089–13101.

    CAS  Google Scholar 

  • Huang, J., & Xie, Z. (2009). Analysis for monitoring vegetation coverage change of Wuhan based on remote sensing data of MODIS. Meteorological and Environmental Science, 32(2), 16–20.

    Google Scholar 

  • Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., et al. (2013). High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics, 13, 6151–6164.

    Google Scholar 

  • Huffman, J. A., Sinha, B., Garland, R. M., & Sneepollmann, A. (2012). Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmospheric Chemistry and Physics, 12(12), 11997–12019.

    CAS  Google Scholar 

  • Humbal, C., Gautama, S., & Trivedib, U. (2018). A review on recent progress in observations, and health effects of bioaerosols. Environment International, 118, 189–193.

    CAS  Google Scholar 

  • Hurtado, L., Rodríguez, G., Lopez, J., Castillo, J. E., Molina, L., Zavala, M., et al. (2014). Characterization of atmospheric bioaerosols at 9 sites in Tijuana Mexico. Atmospheric Environment, 96(7), 430–436.

    CAS  Google Scholar 

  • Hu, D., Wang-Li, L., Simmons, O. D., III., Classen, J. J., & Osborne, J. A. (2015). Spatiotemporal variations of bioaerosols in the vicinity of an animal feeding operation facility in the US. Journal of Environmental Protection, 6, 614–627.

    CAS  Google Scholar 

  • Innocente, E., Squizzato, S., Visin, F., Facca, C., Rampazzo, G., Bertolini, V., et al. (2017). Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Science of The Total Environment, 593–594, 677–687.

    Google Scholar 

  • Iversen, M., (1999). Humans effects of dust exposure in animal confinement buildings. Proceedings of the Dust control in animal production facilities International Symposium, Jutland, Denmark, 131–139.

  • Jaenicke, R. (2005). Abundance of cellular material and proteins in the atmosphere. Science, 308(5718), 73.

    CAS  Google Scholar 

  • Jia, X., Yan, P., Dong, P., Zhang, X., Li, Y., & Guo, W. (2018). Variations of PM mass concentration at Chaoyang Stie in Beijing during. Meteorological Monthly, 44(11), 1489–1500.

    Google Scholar 

  • Jochner, S., Lüpke, M., Laube, J., Weichenmeier, I., Pusch, G., Traidl-Hoffmann, C., et al. (2015). Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps. Atmospheric Environment, 122, 83–93.

    CAS  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations - a review. Science Total Environmental, 326, 151–180.

    CAS  Google Scholar 

  • Lee, B. U., Lee, G., & Heo, K. J. (2016). Concentration of culturable bioaerosols during winter. Journal of Aerosol Science, 94, 1–8.

    Google Scholar 

  • Li, Z. (2017). Temporal and spatial distribution of PM2.5 and PM10 and correlation of particulate matters and meteorological factors in Wuhan. Journal of Green Science and Technology, 10, 66–71.

    Google Scholar 

  • Lo, E., & Levetin, E. (2007). Influence of meteorological conditions on early spring pollen in the Tulsa atmosphere from 1987–2006. Journal of Allergy and Clinical Immunology, 119(1), S101.

    Google Scholar 

  • Lutgring, K. R., Linton, R. H., Zimmerman, N. J., Peugh, M., & Heber, A. J. (1997). Distribution and quantification of bioaerosols in poultry-slaughtering plants. Journal of Food Protection, 60(7), 804–810.

    CAS  Google Scholar 

  • Lu, Z., Wu, C., Yue, W., Feng, K., & Huang, M. (2010). The assessment on residential ecological environment in the central city of Hangzhou. Acta Ecologica Sinica., 30(11), 2856–2863.

    Google Scholar 

  • Lu, R., Li, Y. P., Li, W. X., Xie, Z. S., Fan, C. L., Liu, P. X., et al. (2018). Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Science of The Total Environment, 637–638, 244–252.

    Google Scholar 

  • Lu, S., Wu, Y., & Wang, Y. (2018). Analysis on the characteristics of spatial and temporal distribution and cause in Hangzhou PM2.5. Journal of Mudanjiang University, 27(4), 43–46.

    Google Scholar 

  • Maki, T., Hara, K., Kobayashi, F., Kurosaki, Y., Kakikawa, M., Matsuki, A., et al. (2015). Vertical distribution of airborne bacterial communities in an asian-dust downwind area, noto peninsula. Atmospheric Environment, 119, 282–293.

    CAS  Google Scholar 

  • Maron, P. A., Lejon, D. P. H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., et al. (2005). Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmospheric Environment, 39(20), 3687–3695.

    CAS  Google Scholar 

  • Ma, J., Li, C., Kwan, M., & Chai, Y. (2018). A multilevel analysis of perceived noise pollution, geographic contexts and mental health in Beijing. Int J Environ Res Public Health, 15(7), 1479.

    Google Scholar 

  • Ma, M., Xu, F., & Dang, A. (2019). Study on the spatial temporal change of vegetation coverage between the belts of Beijing’s main urban area based on dynamic remote sensing data. Journal of Environmental Engeering Technology, 9(4), 404–413.

    Google Scholar 

  • Ma, Z., Zhang, H., & Zhang, J. (2009). The analysis on vegetation coverage of Hangzhou based on MODIS system. Journal of Anhui Agri Sci, 34(18), 4618–4619.

    Google Scholar 

  • Millner, P. D. (2009). Bioaerosols associated with animal production operations. Bioresource Technology, 100(22), 5379–5385.

    CAS  Google Scholar 

  • Morris, C. E., Conen, F., Alex, H. J., Phillips, V., Pöschl, U., & Sands, D. C. (2014). Bioprecipitation: A feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Global Change Biology, 20(2), 341–351.

    Google Scholar 

  • Mouli, P. C., Mohan, S. V., & Reddy, S. J. (2005). Assessment of microbial (bacteria) concentrations of ambient air at semi-arid urban region: Influence of meteorological factors. Applied Ecology and Environmental Research, 3(2), 139–149.

    Google Scholar 

  • Ortiz-Martínez, M. G., Rodríguez-Cotto, R. I., Ortiz-Rivera, M. A., Pluguez-Turull, C. W., & Jiménez-Vélez, B. D. (2015). Linking endotoxins, African dust PM10 and asthma in an urban and rural environment of Puerto Rico. Mediators of Inflammation. https://doi.org/10.1155/2015/784212.

    Article  Google Scholar 

  • Park, J., Li, P. F., Ichijo, T., Nasu, M., & Yamaguchi, N. (2018). Effects of Asian dust events on atmospheric bacterial communities at different distances downwind of the source region. Journal of Environmental Sciences, 72, 133–139.

    Google Scholar 

  • Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 37(7), 7520–7540.

    Google Scholar 

  • Radonić, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., & Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313(4), 856–862.

    Google Scholar 

  • Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M., & Finster, K. (2018). Aeolian dispersal of bacteria in Southwest Greenland: Their sources, abundance, diversity and physiological states. FEMS Microbiology Ecology, 94, 1–10.

    Google Scholar 

  • Serrano-Silva, N., & Calderón-Ezquerro, M. C. (2018). Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235, 20–29.

    CAS  Google Scholar 

  • Shen, Q., Qin, J., & Cao, L. (2011). Quantitative Classification and Ordination of Shrub-grass Vegetation on Hangzhou’s Xixi Wetland. Journal of Zhejiang International Studies University., 4, 92–100.

    Google Scholar 

  • Skotak, K., Degorska, A., Ulanczyk, R., & Pecka, T. (2016). Carbonaceous aerosol. An indicator of the human activity impact on environment and health. Przemysl Chemiczny, 95(3), 548–553.

    CAS  Google Scholar 

  • Smets, W., Moretti, S., Denys, S., & Lebeer, S. (2016). Airborne bacteria in the atmosphere: presence, purpose, and potential. Atmospheric Environment, 139, 214–221.

    CAS  Google Scholar 

  • Song, B., Sun, Y., & Xu, D. (2018). Distribution of artemisia pollen and its effect on airway responsiveness in patients with allergic rhinitis. Chinese Medical Digest, 33(5), 385–387.

    Google Scholar 

  • Song, G., Zheng, X. (2012). The Analysis on types and environmental functions of the wetland in Zhejiang province. 2012 2nd International Conference on Applied Social Science, 361–366.

  • Straumfors, A., Heldal, K. K., Eduard, W., Wouters, I. M., Ellingsen, D. G., & Skogstad, M. (2016). Cross-shift study of exposure–response relationships between bioaerosol exposure and respiratory effects in the Norwegian grain and animal feed production industry. Occupational and Environmental Medicine, 73(10), 685–693.

    Google Scholar 

  • Tang, Z., Zeng, X., & Zhao, H. (2019). Research on tree array landscape in urban open space of Hangzhou and Its Influence on environment factors in summer. Journal of Chinese Forestry., 17(2), 1–5.

    Google Scholar 

  • Tong, Y., & Lighthart, B. (2000). The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley Oregon. Aerosol Science Technology, 32, 393–403.

    CAS  Google Scholar 

  • Uetake, J., Tobo, Y., Uji, Y., Hill, T. C. J., DeMott, P., Kreidenweis, S., & Misumi, R. (2019). Seasonal changes of airborne bacterial communities over tokyo and influence of local meteorology. Front Microbiol., 10, 1572.

    Google Scholar 

  • Veillettea, M., Bonifaita, L., Mbarechea, H., Marchandb, G., & Duchainea, C. (2018). Preferential aerosolization of Actinobacteria during handling of composting organic matter. Journal of Aerosol Science, 116, 83–91.

    Google Scholar 

  • Walser, S. M., Gerstnera, D. G., Brennera, B., Büngerb, J., Eikmannc, T., Janssena, B., et al. (2015). Evaluation of exposure–response relationships for health effects of microbial bioaerosols–A systematic review. International Journal of Hygiene and Environmental Health, 218(7), 577–589.

    Google Scholar 

  • Wan, S. H. (2015). The study of universal real-time PCR detection methods for polluted microorganisms in food. South China University of Technology. 1–6.

  • Wang, Q., Ge, J., Xu, X., & Wu, Z. (2009). Research on vegetation coverage in Wuhan Donghu. Science and Technology Innovation Herald, 8, 223–224.

    CAS  Google Scholar 

  • Wittmaack, K., Wehnes, H., Heinzmann, U., & Agerer, R. (2005). An overview on bioaerosols viewed by scanning electron microscopy. Science of the Total Environment, 346(1–3), 244–255.

    CAS  Google Scholar 

  • Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Philosophical Transactions: Biological Sciences, 365(1558), 3645–3653.

    Google Scholar 

  • Wu, Y., Chan, C., & Chew, G. L. (2012). Meteorological factors and ambient bacterial levels in a subtropical urban environment. International Journal of Biometeorology, 56, 1001–1009.

    Google Scholar 

  • Xie, Z. S., Fan, C. L., Lu, R., Liu, P. X., Wang, B. B., Du, S. L., et al. (2018). Characteristics of ambient bioaerosols during haze episodes in China: A review. Environmental Pollution, 243, 1930–1942.

    CAS  Google Scholar 

  • Xie, Z., Li, Y., Lu, R., Li, W., Fan, C., Liu, P., et al. (2018). b). Characteristics of total airborne microbes at various air quality levels. Journal of Aerosol Science, 116, 57–65.

    CAS  Google Scholar 

  • Yamaguchi, N., Ichijo, T., Sakotani, A., Baba, T., & Nasu, M. (2012). Global dispersion of bacterial cells on Asian dust. Scientific Reports, 2, 525.

    Google Scholar 

  • Yoo, K., Lee, T. K., Choi, E. J., Yang, J., Shukla, S. K., Hwang, S., et al. (2017). Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. Journal of Environmental Sciences, 51, 234–247.

    Google Scholar 

  • Zhai, Y., Li, X., Wang, T., Wang, B., Li, C., & Zeng, G. (2018). A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International, 113, 74–90.

    Google Scholar 

  • Zhen, Q., Deng, Y., Wang, Y., Wang, X., Zhang, H., Sun, X., et al. (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601–602, 703–712.

    Google Scholar 

  • Zhou, W. (2018). Study on plant landscape of birds habitat in urban green space at City parks in Hangzhou. Zhejiang Agriculture and Forestry University Master Degree Thesis. 54–57.

Download references

Acknowledgements

This study was supported by a Grant (2016YFF0103103) from the National Key R&D Program of China, the Chinese Academy of Inspection and Quarantine (CAIQ 2018JK015) and the National Key R&D Program of China (2018ZX10101003-002-004). Special thanks are due to all personnel involved in completing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kongxin Hu or Tao Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file 1

Graph of housekeeping gene amplification in collected samples. (a) Animal-derived amplification, (b) plant-derived amplification, and (c) bacteria. (TIF 4246kb)

Supplementary file 2 (DOCX 22kb)

Supplementary file 3 (DOCX 17kb)

Supplementary file 4 (DOCX 25kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhang, Q., Liu, K. et al. Spatial distribution of atmospheric bioaerosols in Beijing, Hangzhou and Wuhan, China. Aerobiologia 37, 155–170 (2021). https://doi.org/10.1007/s10453-020-09680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09680-6

Keywords

Navigation