Skip to main content
Log in

A hierarchically enhanced recovery-based error estimator for bidimensional elastoplastic modelling by generalized finite element approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper aims to contribute with a hierarchically enhanced recovery-based error estimator by using the Zienkiewicz–Zhu (ZZ) recovery procedure and a generalized finite element formulation. The proposed stress recovery consists in an approximation procedure that is enriched hierarchically by using partition of unity (PU) and an enrichment function. In other words, the approximation matrix used for stress field recovery employs the enriched finite element (FE) shape function. Furthermore, the edge-bubble hierarchically enriched strategy in the context of a generalized finite element approach is adopted to develop the enriched \(\hbox {C}^{0}\) element and approximation the matrix. The error estimator based on this hierarchically enhanced recovery procedure and the generalized finite element approach is employed to solve several elastic and elastoplastic hardening benchmark problems. Moreover, the effectivity index, refinement index, recovered stress field, global error and local error, both in energy norm, are evaluated in several applications. In addition, the sensitivity of the proposed recovery procedure to a severely distorted mesh is also analysed. The results obtained by the proposed procedure is compared to other well-established recovery procedures and finite element approaches. By comparing the results, the robustness in the numerical performance, the versatility in the computational implementation and the competitivity of the proposed procedure are demonstrated in the applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Alberty, J., Carstensen, C., Zarrabi, D.: Adaptive numerical analysis in primal elastoplasticity with hardening. Comput. Methods Appl. Mech. Eng. 171, 175–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allendes, A., Otárola, E., Rankin, R.: A posteriori error estimators for stabilized finite element approximations of an optimal control problem. Comput. Methods Appl. Mech. Eng. 340, 147–177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anitescu, C., Hossain, M.N., Rabczuk, T.: Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes. Comput. Methods Appl. Mech. Eng. 328, 638–662 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Augarde, C.E., Deeks, A.J.: The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis. Finite Elem. Anal. Des. 44, 595–601 (2008)

    Article  Google Scholar 

  5. Barros, F.B., Proença, S.P.B., Barcellos, C.S.: On error estimator and \(p\)-adaptivity in the generalized finite element method. Int. J. Numer. Methods Eng. 60, 2373–2398 (2004)

    Article  MATH  Google Scholar 

  6. Barros, F.B., Proença, S.P.B., Barcellos, C.S.: Generalized finite element method in structural nonlinear analysis—a \(p\)-adaptive strategy. Comput. Mech. 33, 95–107 (2004)

    Article  MATH  Google Scholar 

  7. Barros, F.B., Barcellos, C.S., Duarte, C.A., Torres, D.A.F.: Subdomain-based error techniques for generalized finite element approximations of problems with singular stress fields. Comput. Mech. 52, 1395–1415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bathe, K.J.: Finite Element Procedure. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  9. Belytschko, T., Fries, T.P.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benedetti, A., Miranda, S., Ubertini, F.: A posteriori error estimation based on the superconvergent recovery by compatibility in patches. Int. J. Numer. Methods Eng. 67, 108–131 (2006)

    Article  MATH  Google Scholar 

  11. Bordas, S., Duflot, M.: Derivative recovery and a posteriori error estimate for extended finite elements. Comput. Methods Appl. Mech. Eng. 196, 3381–3399 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bordas, S.P.A., Rabczuk, T., Hung, N.X., Nguyen, V.P., Natarajan, S., Bog, T., Quan, D.M., Hiep, N.V.: Strain smoothing in FEM and XFEM. Comput. Struct. 88, 1419–1443 (2010)

    Article  Google Scholar 

  13. Boroomand, B., Zienkiewicz, O.C.: Recovery by equilibrium in patches (REP). Int. J. Numer Methods Eng. 40, 137–164 (1997)

    Article  MathSciNet  Google Scholar 

  14. Boroomand, B., Zienkiewicz, O.C.: Recovery procedures in error estimation and adaptivity. Part II: adaptivity in nonlinear problems of elasto-plasticity behavior. Comput. Methods Appl. Mech. Eng. 176, 127–146 (1999)

    Article  MATH  Google Scholar 

  15. Boroomand, B., Ghaffarian, M., Zienkiewicz, O.C.: On application of two superconvergent recovery procedures to plate problems. Int. J. Numer. Methods Eng. 61, 1644–1673 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bucher, A., Meyer, A., Görke, U.J., Kreißig, R.: A contribution to error estimation and mapping algorithms for a hierarchical adaptive FE-strategy in finite elastoplasticity. Comput. Mech. 36, 182–195 (2005)

    Article  MATH  Google Scholar 

  17. Bucher, A., Meyer, A., Görke, U.J., Kreißig, R.: A comparison of mapping algorithms for hierarchical adaptive FEM in finite elasto-plasticity. Comput. Mech. 39, 521–536 (2007)

    Article  MATH  Google Scholar 

  18. Cai, Z., Cao, S., Falgout, R.: Robust a posteriori error estimation for finite element approximation to H (curl) problem. Comput. Methods Appl. Mech. Eng. 309, 182–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cai, Z., He, C., Zhang, S.: Improved ZZ a-posteriori error estimators for diffusion problems: conforming linear elements. Comput. Methods Appl. Mech. Eng. 313, 433–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Çalik-Karaköse, Ü.H., Askes, H.: A recovery-type a posteriori error estimator for gradient elasticity. Comput. Struct. 154, 204–209 (2015)

    Article  Google Scholar 

  21. Castellazzi, G., Miranda, S., Ubertini, F.: Adaptivity based on the recovery by compatibility in patches. Finite Elem. Anal. Des. 46, 379–390 (2010)

    Article  MATH  Google Scholar 

  22. Castellazzi, G., Miranda, S., Ubertini, F.: Patch based stress recovery for plate structures. Comput. Mech. 47, 379–394 (2011)

    Article  MATH  Google Scholar 

  23. Cen, S., Zhou, G.H., Fu, X.R.: A shape-free 8-node plane element unsymmetric analytical trial function method. Int. J. Numer. Methods Eng. 91, 158–185 (2012)

    Article  MATH  Google Scholar 

  24. Daghia, F., Miranda, S., Ubertini, F.: Patch based recovery in finite element elastoplastic analysis. Comput. Mech. 52, 827–836 (2013)

    Article  MATH  Google Scholar 

  25. Duarte, C.A., Oden, J.T.: An hp adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139, 237–262 (1996)

    Article  MATH  Google Scholar 

  26. Gerasimov, T., Rüter, M., Stein, E.: An explicit residual-type error estimator for Q1-quadrilateral extended finite element method in two-dimensional linear elastic fracture mechanics. Int. J. Numer. Methods Eng. 90, 1118–1155 (2012)

    Article  MATH  Google Scholar 

  27. González-Estrada, O.A., Natarajan, S., Ródenas, J.J., Nguyen-Xuan, H., Bordas, S.P.A.: Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Comput. Mech. 52, 37–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. González-Estrada, O.A., Ródenas, J.J., Bordas, S.P.A., Nadal, E., Kerfriden, P., Fuenmayor, F.J.: Locally equilibrated stress recovery for goal-oriented error estimation in the extended finite element method. Comput. Struct. 152, 1–10 (2015)

    Article  Google Scholar 

  29. Grätsch, T., Bathe, K.J.: A posteriori error estimation techniques in practical finite element analysis. Comput. Struct. 83, 235–265 (2005)

    Article  MathSciNet  Google Scholar 

  30. Hsu, Y.S.: Enriched finite element methods for Timoshenko beam free vibration analysis. Appl. Math. Model. 40, 7012–7033 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huerta, A., Díez, P.: Implicit residual type error estimators. Springer Briefs in Applied Sciences and Technology. Springer, Cham (2015)

    Google Scholar 

  32. Idesman, A.: A new exact, closed-form a priori global error estimator for second- and higher-order time-integration methods for linear elastodynamics. Int. J. Numer. Methods Eng. 88, 1066–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jansari, C., Natarajan, S., Beex, L., Kannan, K.: Adaptive smoothed stable extended finite element method for weak discontinuities for finite elasticity. Eur. J. Mech. A Solids 78, 103824 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jumar, M., Kvamsdal, T., Johannessen, K.A.: Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 1086–1156 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ju, X., Mahnken, R.: Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticiy. Comput. Methods Appl. Mech. Eng. 351, 297–329 (2019)

    Article  MATH  Google Scholar 

  36. Ladevèze, P.: Constitutive relation error estimators for time-dependent non-linear FE analysis. Comput. Methods Appl. Mech. Eng. 188, 775–788 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lins, R.M., Ferreira, M.D.C., Proença, S.P.B., Duarte, C.A.: An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method. Comput. Mech. 56, 947–965 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lins, R.M., Proença, S.P.B., Duarte, C.A.: Efficient and accurate stress recovery procedure and a-posteriori error estimator for the stable generalized/extended finite element method. Int. J. Numer. Methods Eng. 119, 1279–1306 (2019)

    MathSciNet  Google Scholar 

  39. Lubliner, J.: Plasticity Theory. Dover Publications, Mineola, New York (2008)

    MATH  Google Scholar 

  40. Mohite, P.M., Upadhyay, C.S.: A generalized adaptive finite element analysis of laminated plates. Comput. Struct. 112–113, 217–234 (2012)

    Article  Google Scholar 

  41. Mota, A., Abel, J.F.: On mixed finite element formulations and stress recovery techniques. Int. J. Numer. Methods Eng. 47, 191–204 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oh, H.S., Batra, R.C.: Application of Zienkiewicz–Zhu’s error estimate with superconvergent patch recovery to hierarchical \(p\)-refinement. Finite Elem. Anal. Des. 31, 273–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Payen, D.J., Bathe, K.J.: The use of nodal point forces to improve element stresses. Comput. Struct. 89, 485–495 (2011)

    Article  Google Scholar 

  44. Payen, D.J., Bathe, K.J.: Improved stresses for the 4-node tetrahedral element. Comput. Struct. 89, 1265–1273 (2011)

    Article  Google Scholar 

  45. Payen, D.J., Bathe, K.J.: A stress improvement procedure. Comput. Struct. 112–113, 311–326 (2012)

    Article  Google Scholar 

  46. Prange, C., Loehnert, S., Wriggers, P.: Error estimation for crack simulations using the XFEM. Int J. Numer. Methods Eng. 91, 1459–1474 (2012)

    Article  MathSciNet  Google Scholar 

  47. Prudhomme, S., Nobile, F., Chamoin, L., Oden, J.T.: Analysis of a subdomain-based error estimator for finite element approximations of elliptic problems. Numer. Methods Partial Differ. Equ. 20, 165–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rabczuk, T., Belytschko, T.: A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Methods Appl. Mech. Eng. 196, 2777–2799 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rabczuk, T., Areias, P.M.A., Belytschko, T.: A meshfree shin shell method for non-linear dynamic fracture. Int. J. Numer. Methods Eng. 72, 524–548 (2007)

    Article  MATH  Google Scholar 

  50. Ródenas, J.J., González-Estrada, O.A., Díez, P., Fuenmayor, F.J.: Accurate recovery-based upper error bounds for the extended finite element framework. Comput. Methods Appl. Mech. Eng. 199, 2607–2621 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ródenas, J.J., González-Estrada, O.A., Fuenmayor, F.J., Chinesta, F.: Enhanced error estimator based on a nearly equilibrated moving least squares recovery techniques for FEM and XFEM. Comput. Mech. 52, 321–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Romero, I., Lacoma, L.M.: Analysis of error estimators for the semidiscrete equations of linear solid and structural dynamics. Comput. Methods Appl. Mech. Eng. 195, 2674–2696 (2006)

    Article  MATH  Google Scholar 

  53. Rüter, M., Gerasimov, T., Stein, E.: Goal-oriented explicit residual-type error estimates in XFEM. Comput. Mech. 52, 361–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sanchez-Rivadeneira, A.G., Duarte, C.A.: A stable generalized/extended FEM with discontinuous interpolants for fracture mechanics. Comput. Methods Appl. Mech. Eng. 345, 876–918 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sanchez-Rivadeneira, A.G., Shauer, N., Mazurowski, B., Duarte, C.A.: A stable generalized/extended \(p\)-hierarchical FEM for three-dimensional linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 364, 112970 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. Segeth, K.: A review of some a posteriori error estimates for adaptive finite element methods. Math. Comput. Simul. 80, 1589–1600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shang, H.Y., Machado, R.D., Abdalla Filho, J.E.: Dynamic analysis of Euler-Bernoulli beam problems using the generalized finite element method. Comput. Struct. 173, 109–122 (2016)

    Article  Google Scholar 

  58. Shang, H.Y., Machado, R.D., Abdalla Filho, J.E., Arndt, M.: Numerical analysis of plane stress free vibration in severely distorted mesh by generalized finite element method. Eur. J. Mech. A Solids 62, 50–66 (2017)

    Article  MATH  Google Scholar 

  59. Shang, H.Y., Machado, R.D., Abdalla Filho, J.E.: On the performance of GFEM with trigonometric enrichment in bidimensional dynamic elastoplastic modelling. Eur. J. Mech. A Solids 73, 512–527 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Stephen, D.B., Steven, G.P.: Error estimation for natural frequency finite element analysis. Finite Elem. Anal. Des. 26, 21–40 (1997)

    Article  MATH  Google Scholar 

  61. Strouboulis, T., Zhang, L., Wang, D., Babuska, I.: A posteriori error estimation for generalized finite element methods. Comput. Methods Appl. Mech. Eng. 195, 852–879 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  62. Thoi, T.N., Vu-Do, H.C., Rabczuk, T., Xuan, H.N.: A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 199, 3005–3027 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill Book Company, New York (1951)

    MATH  Google Scholar 

  64. Ubertini, F.: Patch recovery based on complementary energy. Int. J. Numer. Methods Eng. 59, 1501–1538 (2004)

    Article  MATH  Google Scholar 

  65. Verdugo, F., Parés, N., Díez, P.: Error assessment in structural transient dynamics. Arch. Comput. Methods Eng. 21, 59–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yu, T., Bui, T.Q.: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement. Comput. Struct. 196, 112–133 (2018)

    Article  Google Scholar 

  67. Wang, H., Yang, W., Huang, Y.: Adaptive finite element method for the sound wave problems in two kinds of media. Comput. Math. Appl. 79, 789–801 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yang, Z.J., Zhang, Z.H., Liu, G.H., Ooi, E.T.: An h-hierarchical adaptive scaled boundary finite element method for elastodynamics. Comput. Struct. 89, 1417–149 (2011)

    Article  Google Scholar 

  69. Zhang, Z., Naga, A.: Validation of the a-posteriori error estimator based on polynomial preserving recovery for linear elements. Int. J. Numer. Methods Eng. 61, 1860–1893 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhao, C., Steven, G.P.: A practical error estimator for finite element predicted natural frequencies of membrane vibration problems. J. Sound Vib. 195, 739–756 (1996)

    Article  MATH  Google Scholar 

  71. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics, 6th edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  72. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101, 207–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shang Hsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, Y.S. A hierarchically enhanced recovery-based error estimator for bidimensional elastoplastic modelling by generalized finite element approach. Acta Mech 232, 881–906 (2021). https://doi.org/10.1007/s00707-020-02840-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02840-2

Navigation