Skip to main content
Log in

A depth integrated, coupled, two-phase model for debris flow propagation

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Debris flows are a type of fast landslides where a mixture of soil and water propagates along narrow channels. The main characteristics are (1) important relative displacements between the solid and fluid phases, and (2) development of pore-water pressures in excess to hydrostatic. The ratios between vertical and horizontal displacements of the flow, from the triggering point to the deposition, indicate that friction angles are much smaller than those measured in laboratories. Debris flows are modeled as two phases flow, but implementing pore-water pressure is an important issue. The purpose of this paper is to improve the existing two phases debris flow models by implementing pore-water pressures in excess to hydrostatic. It is found that pore pressure evolution depends on consolidation, changes in the flow depth, and changes and gradients of porosity. The proposed depth integrated mathematical model is discretized using two sets of SPH nodes (solid and fluid), with a set of finite difference meshes associated with each solid material SPH point. The paper presents two examples from where it is possible to gain insight into the differences between the models (with and without excess pore water pressure).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14(1):137–147

    Article  MATH  Google Scholar 

  2. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6(4):527–539

    Article  Google Scholar 

  3. Ata R, Soulaïmani A (2005) A stabilized SPH method for inviscid shallow water flows. Int J Numer Methods Fluids 47(2):139–159

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  5. Benz W (1990) Smooth particle hydrodynamics: a review. In: Buchler JR (ed) Numerical modelling nonlinear stellar pulsations. Springer, Dordrecht, pp 269–288

    Chapter  Google Scholar 

  6. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  7. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonet J, Kulasegaram S, Rodriguez-Paz MX, Profit M (2004) Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput Methods Appl Mech Eng 193(12–14):1245–1256

    Article  MATH  Google Scholar 

  9. Bui HH, Nguyen GD (2017) A coupled fluid-solid SPH approach to modelling flow through deformable porous media. Int J Solids Struct 125:244–264

    Article  Google Scholar 

  10. Cascini L, Cuomo S, Pastor M, Rendina I (2016) SPH-FDM propagation and pore water pressure modelling for debris flows in flume tests. Eng Geol 213:74–83

    Article  Google Scholar 

  11. Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46(2):231–252

    Article  MATH  Google Scholar 

  12. Coetzee CJ, Vermeer PA, Basson AH (2005) The modelling of anchors using the material point method. Int J Numer Anal Methods Geomech 29(9):879–895

    Article  MATH  Google Scholar 

  13. Córdoba G, Sheridan MF, Pitman EB (2015) TITAN2F: A pseudo-3-D model of 2-phase debris flows. Nat Hazards Earth Syst Sci Discuss 3(6):3789–3822

    Google Scholar 

  14. Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. Comput Methods Appl Mech Eng 139(1–4):237–262

    Article  MathSciNet  MATH  Google Scholar 

  15. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  16. Gonda Y (2009) Function of a debris-flow brake. Int J Eros Control Eng 2(1):15–21

    Article  MATH  Google Scholar 

  17. Gray JM, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc Lond Ser A Math Phys Eng Sci 455(1985):1841–1874

    Article  MathSciNet  MATH  Google Scholar 

  18. Hutchinson JN (1986) A sliding-consolidation model for flow slides. Can Geotech J 23(2):115–126

    Article  Google Scholar 

  19. Hutter K, Siegel M, Savage SB, Nohguchi Y (1993) Two-dimensional spreading of a granular avalanche down an inclined plane Part I. Theory. Acta Mech 100(1–2):37–68

    Article  MathSciNet  MATH  Google Scholar 

  20. Hutter K, Wang Y, Pudasaini SP (2005) The Savage–Hutter avalanche model: how far can it be pushed? Philos Trans R Soc A Math Phys Eng Sci 363(1832):1507–1528

    Article  MathSciNet  MATH  Google Scholar 

  21. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  22. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J Geophys Res Solid Earth 106(B1):537–552

    Article  Google Scholar 

  23. Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Methods Geomech 37(15):2502–2522

    Article  Google Scholar 

  24. Laigle D, Coussot P (1997) Numerical modeling of mudflows. J Hydraul Eng 123(7):617–623

    Article  Google Scholar 

  25. Li S, Liu WK (2004) Meshfree particle methods, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  26. Liu GR, MB Liu (2003) Smoothed particle hydrodynamics: a meshfree particle method. World scientific, p 472. https://doi.org/10.1142/5340

  27. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  28. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097

    Article  Google Scholar 

  29. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  MathSciNet  MATH  Google Scholar 

  30. Merodo JAF, Pastor M, Mira P, Tonni L, Herreros MI, Gonzalez E, Tamagnini R (2004) Modelling of diffuse failure mechanisms of catastrophic landslides. Comput Methods Appl Mech Eng 193(27–29):2911–2939

    Article  MATH  Google Scholar 

  31. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  32. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311

    Article  MATH  Google Scholar 

  33. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389

    Article  MATH  Google Scholar 

  34. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–155

    Article  Google Scholar 

  35. Morris JP (1996) Analysis of smoothed particle hydrodynamics with applications. Ph.D. thesis, Monash University

  36. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MathSciNet  MATH  Google Scholar 

  37. Oñate E, Idelsohn S (1998) A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput Mech 21(4–5):283–292

    MathSciNet  MATH  Google Scholar 

  38. Pastor M, Blanc T, Pastor MJ (2009) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J Nonnewton Fluid Mech 158(1–3):142–153

    Article  MATH  Google Scholar 

  39. Pastor M, Blanc T, Haddad B, Drempetic V, Morles MS, Dutto P, Stickle MM, Mira P, Merodo JA (2015) Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Arch Comput Methods Eng 22(1):67–104

    Article  MathSciNet  MATH  Google Scholar 

  40. Pastor M, Stickle MM, Dutto P, Mira P, Merodo JAF, Blanc T, Sancho S, Benítez AS (2015) A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Contin Mech Thermodyn 27(1–2):21–47

    Article  MathSciNet  MATH  Google Scholar 

  41. Pastor M, Yague A, Stickle MM, Manzanal D, Mira P (2018) A two-phase SPH model for debris flow propagation. Int J Numer Anal Methods Geomech 42(3):418–448

    Article  Google Scholar 

  42. Pastor M, Quecedo M, Merodo JA, Herrores MI, Gonzalez E, Mira P (2002) Modelling tailings dams and mine waste dumps failures. Géotechnique 52(8):579–591

    Article  Google Scholar 

  43. Pastor M, Blanc T, Pastor MJ, Sánchez M, Haddad B, Mira P, Fernández-Merodo JA, Herreros I, Drempetic V (2007) A SPH depth integrated model with pore pressure coupling for fast landslides and related phenomena. In: Ho & Li (eds) 2007 International forum on landslide disaster management. Hong Kong, pp 987–1014

  44. Pastor M, Quecedo M, Gonzalez E, Herreros MI, Merodo JA, Mira P (2004) Modelling of landslides: (II) propagation. In: Felix D, Ioannis V (eds) Degrad. Instab. Geomaterials, pp 319–367. Springer, Vienna

  45. Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos Trans R Soc A Math Phys Eng Sci 363(1832):1573–1601

    Article  MathSciNet  MATH  Google Scholar 

  46. Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Earth Surf 117(F3):F03010

  47. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin

    Google Scholar 

  48. Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59(12):1633–1656

    Article  MATH  Google Scholar 

  49. Randles PW, Libersky LD (2000) Normalized SPH with stress points. Int J Numer Methods Eng 48(10):1445–1462

    Article  MATH  Google Scholar 

  50. Rodriguez-Paz M, Bonet J (2005) A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput Struct 83(17–18):1396–1410

    Article  MathSciNet  Google Scholar 

  51. Saint-Venant A (1871) Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l’introduction de marees dans leurs lits. Comptes-Rendus l’Académie Des Sci 73:147–273

    MATH  Google Scholar 

  52. Salazar F, Oñate E, Morán R (2011) Numerical modeling of landslides in reservoirs using the Particle Finite Element Method (PFEM). pp 245–250, Valencia, Spain. Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management: Proceedings of the 3rd International Forum on Risk Analysis. Dam Safety, Dam

  53. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  MathSciNet  MATH  Google Scholar 

  54. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I: analysis. Acta Mech 86(1–4):201–223

    Article  MathSciNet  MATH  Google Scholar 

  55. Vacondio R, Rogers BD, Stansby PK, Mignosa P, Feldman J (2013) Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput Methods Appl Mech Eng 256:132–148

    Article  MathSciNet  MATH  Google Scholar 

  56. Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv Water Resour 59:146–156

    Article  Google Scholar 

  57. Vacondio R, Rogers BD, Stansby PK, Mignosa P (2013) Shallow water SPH for flooding with dynamic particle coalescing and splitting. Adv Water Resour 58:10–23

    Article  MATH  Google Scholar 

  58. Wang Y, Hutter K (1999) A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol Acta 38(3):214–223

    Article  Google Scholar 

  59. Wiȩckowski Z (2004) The material point method in large strain engineering problems. Comput Methods Appl Mech Eng 193(39–41):4417–4438

    Article  MATH  Google Scholar 

  60. Wilson FM (2005) Report on the debris flow at Sham Tseng San Tsuen of 23 august 1999. Technical report, Findings of the investigation. GEO REPORT No. 169, Geotechnical Engineering Office, Civil Engineering and Development Department, The Government of the Hong Kong Special Administrative Region

  61. Xia X, Liang Q, Pastor M, Zou W, Zhuang Y (2013) Balancing the source terms in a SPH model for solving the shallow water equations. Adv Water Resour 59:25–38

    Article  Google Scholar 

  62. Yifru AL, Laache E, Norem H, Nordal S, Thakur VK (2018) Laboratory investigation of performance of a screen type debris-flow countermeasure. HKIE Trans 25(2):129–144

    Article  Google Scholar 

  63. Zabala F, Alonso EE (2011) Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61(9):795–808

    Article  Google Scholar 

  64. Zhu Y, Fox PJ (2001) Smoothed particle hydrodynamics model for diffusion through porous media. Transp Porous Media 43(3):441–471

    Article  Google Scholar 

  65. Zienkiewicz OC, Chan AHC, Pastor M, Shrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, p 398

  66. Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. Int J Numer Anal Methods Geomech 8(1):71–96

    Article  MATH  Google Scholar 

  67. Zienkiewicz OC, Xie YM, Schrefler BA, Ledesma A, Bicanic N (1990) Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. Proc R Soc A Math Phys Eng Sci 429(1877):311–321

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the economic support provided by the Spanish Ministry MINECO under project ALAS (BIA2016-76253-P). In addition, the authors gratefully acknowledge the support of the Geotechnical Engineering Office, Civil Engineering and Development Department of the Government of the Hong Kong SAR in the provision of the digital terrain models for the Hong Kong landslide case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Pastor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor, M., Tayyebi, S.M., Stickle, M.M. et al. A depth integrated, coupled, two-phase model for debris flow propagation. Acta Geotech. 16, 2409–2433 (2021). https://doi.org/10.1007/s11440-020-01114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01114-4

Keywords

Navigation