Skip to main content
Log in

Stability for a boundary contact problem in thermoelastic Timoshenko’s beam

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We demonstrate the existence of solutions to Signorini’s problem for the Timoshenko’s beam by using a hybrid disturbance. This disturbance enables the use of semigroup theory to show the existence and asymptotic stability. We show that stability is exponential, when the waves speed of propagation is equal. When the waves speed is different, we show that the solution decays polynomially. This result is new. We perform numerical experiments to visualize the asymptotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lions, J.L., Lagnese, J.E.: Modelling Analysis and Control of Thin Plates. Collection RMA. Masson, Paris (1989)

    MATH  Google Scholar 

  2. Timoshenko, S.P.: On the correction for shear of the differential equation for transversal vibrations of prismatic bars. Philos. Mag. Ser. 6(41), 744–746 (1921)

    Article  Google Scholar 

  3. Andrews, K.T., Shillor, M., Wright, S.: On the dynamic vibrations of a elastic beam in frictional contact with a rigid obstacle. J. Elast. 42, 1–30 (1996)

    Article  MathSciNet  Google Scholar 

  4. Kutter, K.L., Shillor, M.: Vibrations of a beam between two stops. Dyn. Contin. Discrete Impuls. Syst. Sér. B Appl. Algorithms 8, 93–110 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Copetti, M.I.M., Elliot, C.M.: A one dimensional quasi-static contact problem in linear thermoelasticity. Eur. J. Appl. Math. 4, 151–174 (1993)

    Article  MathSciNet  Google Scholar 

  6. Dumont, Y., Paoli, L.: Vibrations of a beam between stops: convergence of a fully discretized approximation. Math. Model. Numer. Anal. 40, 705–734 (2006)

    Article  Google Scholar 

  7. Muñoz Rivera, J.E., Arantes, S.: Exponential decay for a thermoelastic beam between tow stops. J. Therm. Stress 31, 537–556 (2008)

    Article  Google Scholar 

  8. Berti, A., Rivera, J.E.M., Naso, M.G.: A contact problem for a thermoelastic Timoshenko beam. Z. Angew. Math. Phys. 66, 1–20 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Muñoz Rivera, J.E., Oquendo, H.P.: Exponential stability to a contact problem of partially viscoelastic materials. J. Elast. 63, 87–111 (2001)

    Article  MathSciNet  Google Scholar 

  10. da Dilberto, S.A., Santos, M.L., Rivera, J.E.M.: Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Z. Angew. Math. Phys. 65, 1233–1249 (2014)

    Article  MathSciNet  Google Scholar 

  11. Almeida, D.S., Santos, M.L., Rivera, J.E.M.: Stability to weakly dissipative Timoshenko systems. Math. Methods Appl. Sci. 36, 1965–1976 (2013)

    Article  MathSciNet  Google Scholar 

  12. Liu, Z., Zheng, S.: Exponential stability of semigroup associated with thermoelastic system. Quart. Appl. Math. 51(3), 535–545 (1993)

    Article  MathSciNet  Google Scholar 

  13. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, p. 599. Springer, New York (2011). https://doi.org/10.1007/978-0-387-70914-7

    Book  MATH  Google Scholar 

  14. Pruess, J.: On the spectrum of \(C_0\)-semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984)

    Google Scholar 

  15. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2009)

    Article  MathSciNet  Google Scholar 

  16. Loula, A.D.F., Hughes, J.R., Franca, L.P.: Petrov–Galerkin formulation of the Timoshenko beam problem. Comput. Methods Appl. Mech. Eng. 63, 115–132 (1987)

    Article  MathSciNet  Google Scholar 

  17. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. 85, 67–94 (1959)

    Google Scholar 

  18. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering Series. Dover Publications, New York (2000)

    MATH  Google Scholar 

  19. Arnold, D.N.: Discretization by finite elements of a model parameter dependent problem. Numer. Math. (1981). https://doi.org/10.1007/BF01400318

  20. Hughes, T.J.R., Taylor, R.L., Kanoknukulcahi, W.: A simple and efficient finite element method for plate bending. Int. J. Numer. Methods Eng. 11, 1529–1543 (1977). https://doi.org/10.1002/nme.1620111005

    Article  MATH  Google Scholar 

  21. Prathap, G., Bhashyam, G.R.: Reduced integration and the shear-flexible beam element. Int. J. Numer. Methods Eng. 18, 195–210 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the anonymous referees for their comments and suggestions that have contributed greatly to the improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. da Costa Baldez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J.E.M., da Costa Baldez, C.A. Stability for a boundary contact problem in thermoelastic Timoshenko’s beam. Z. Angew. Math. Phys. 72, 8 (2021). https://doi.org/10.1007/s00033-020-01437-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01437-y

Keywords

Mathematics Subject Classification

Navigation