Skip to main content

Advertisement

Log in

A Short Review of Recent Advances in Direct CO2 Hydrogenation to Alcohols

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The continuous increase in anthropogenic carbon dioxide (CO2) emission resulting in global climate change has been of great concern in the past decades. With the renewable hydrogen resource being more realistic, the transformation of CO2 with hydrogen into value-added chemicals becomes a promising route to address the environment and climate issues. The chemical synthesis of alcohols which serve as chemical building blocks and the hydrogen energy carrier through direct CO2 hydrogenation has attracted more attention and been studied extensively nowadays. There remain major challenges in developing catalysts with high activity, selectivity and stability. In this review, we summarize the state of the art advances and perspectives in direct CO2 hydrogenation to methanol and other higher alcohols. We focus on the catalyst design, mechanistic investigation and the structure-performance relations of two categories of catalysts, noble metal and non-noble metal. Then, we propose an outlook for further catalyst design and study in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81. https://doi.org/10.1039/b912904a

    Article  CAS  Google Scholar 

  2. Aresta M, Dibenedetto A, Angelini A (2013) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742. https://doi.org/10.1021/cr4002758

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727. https://doi.org/10.1039/c1cs15008a

    Article  CAS  PubMed  Google Scholar 

  4. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5(6):7281–7305. https://doi.org/10.1039/c2ee03403d

    Article  CAS  Google Scholar 

  5. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192. https://doi.org/10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  6. Sanz-Perez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116(19):11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173

    Article  CAS  PubMed  Google Scholar 

  7. Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products–closing the loop. Chem Soc Rev 43(23):7995–8048. https://doi.org/10.1039/c4cs00122b

    Article  CAS  PubMed  Google Scholar 

  8. Daza YA, Kuhn JN (2016) CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv 6(55):49675–49691. https://doi.org/10.1039/c6ra05414e

    Article  CAS  Google Scholar 

  9. He M, Sun Y, Han B (2013) Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew Chem Int Ed Engl 52(37):9620–9633. https://doi.org/10.1002/anie.201209384

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci (Weinh) 5(1):1700275. https://doi.org/10.1002/advs.201700275

    Article  CAS  Google Scholar 

  11. White JL, Baruch MF, Pander Iii JE, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y, Shaw TW, Abelev E, Bocarsly AB (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935. https://doi.org/10.1021/acs.chemrev.5b00370

    Article  CAS  PubMed  Google Scholar 

  12. Liu C, Wang W, Liu B, Qiao J, Lv L, Gao X, Zhang X, Xu D, Liu W, Liu J, Jiang Y, Wang Z, Wu L, Wang F (2019) Recent advances in MOF-based nanocatalysts for photo-promoted CO2 reduction applications. Catalysts 9(8). https://doi.org/10.3390/catal9080658

  13. Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115(23):12936–12973. https://doi.org/10.1021/acs.chemrev.5b00197

    Article  CAS  PubMed  Google Scholar 

  14. Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Cat Sci Technol 2(1):19–28. https://doi.org/10.1039/c1cy00314c

    Article  CAS  Google Scholar 

  15. Gao S-T, Liu W-H, Shang N-Z, Feng C, Wu Q-H, Wang Z, Wang C (2014) Integration of a plasmonic semiconductor with a metal–organic framework: a case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity. RSC Adv 4(106):61736–61742. https://doi.org/10.1039/c4ra11364k

    Article  CAS  Google Scholar 

  16. Yuan Y-P, Ruan L-W, Barber J, Joachim Loo SC, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ Sci 7(12):3934–3951. https://doi.org/10.1039/c4ee02914c

    Article  CAS  Google Scholar 

  17. Hiroaki Sakurai AU, Kobayashi T, Haruta M (1997) Low-temperature water–gas shift reaction over gold deposited on TiO2. Chem Commun:271–272

  18. Melo CI, Szczepanska A, Bogel-Lukasik E, Nunes da Ponte M, Branco LC (2016) Hydrogenation of carbon dioxide to methane by ruthenium nanoparticles in ionic liquid. ChemSusChem 9(10):1081–1084. https://doi.org/10.1002/cssc.201600203

    Article  CAS  PubMed  Google Scholar 

  19. Maria Luisa Cubeiro HM, Goldwasser MR, Josefina Pérez-Zurita M, González-Jiménez F, de Caribay Urbina N (1999) Hydrogenation of carbon oxides over Fe/Al2O3 catalysts. Appl Catal A-Gen 189:87–97. https://doi.org/10.1016/S0926-860X(99)00262-8

    Article  Google Scholar 

  20. Gao P, Dang S, Li S, Bu X, Liu Z, Qiu M, Yang C, Wang H, Zhong L, Han Y, Liu Q, Wei W, Sun Y (2017) Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catal 8(1):571–578. https://doi.org/10.1021/acscatal.7b02649

    Article  CAS  Google Scholar 

  21. Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324. https://doi.org/10.1038/nchem.1873

    Article  CAS  PubMed  Google Scholar 

  22. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92(11):2557–2567. https://doi.org/10.1016/j.cherd.2014.03.005

    Article  CAS  Google Scholar 

  23. Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sust Energ Rev 44:508–518. https://doi.org/10.1016/j.rser.2015.01.010

    Article  CAS  Google Scholar 

  24. Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81. https://doi.org/10.1016/j.jcou.2013.12.005

    Article  CAS  Google Scholar 

  25. Roy S, Cherevotan A, Peter SC (2018) Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett 3(8):1938–1966. https://doi.org/10.1021/acsenergylett.8b00740

    Article  CAS  Google Scholar 

  26. Dang S, Yang H, Gao P, Wang H, Li X, Wei W, Sun Y (2019) A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal Today 330:61–75. https://doi.org/10.1016/j.cattod.2018.04.021

    Article  CAS  Google Scholar 

  27. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810. https://doi.org/10.1126/science.1137013

    Article  CAS  PubMed  Google Scholar 

  28. Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36(9). https://doi.org/10.1039/b414039g

  29. Alexander E, Farrell RJP, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. https://doi.org/10.1126/science.1121416

    Article  CAS  Google Scholar 

  30. Prieto G (2017) Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates thermodyn mic and kinetic bounds and Progress with heterogeneous and homogeneous catalysis. Chem Sus Chem 10:1056–1070. https://doi.org/10.1002/cssc.v10.6

    Article  CAS  Google Scholar 

  31. Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J (2017) Status and prospects in higher alcohols synthesis from syngas. Chem Soc Rev 46(5):1358–1426. https://doi.org/10.1039/c6cs00324a

    Article  CAS  PubMed  Google Scholar 

  32. Bao J, Yang G, Yoneyama Y, Tsubaki N (2019) Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. ACS Catal 9(4):3026–3053. https://doi.org/10.1021/acscatal.8b03924

    Article  CAS  Google Scholar 

  33. Lang XD, He LN (2016) Green catalytic process for cyclic carbonate synthesis from carbon dioxide under mild conditions. Chem Rec 16(3):1337–1352. https://doi.org/10.1002/tcr.201500293

    Article  CAS  PubMed  Google Scholar 

  34. Gunasekar GH, Park K, Jung K-D, Yoon S (2016) Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg Chem Front 3(7):882–895. https://doi.org/10.1039/c5qi00231a

    Article  CAS  Google Scholar 

  35. Li J, Wang L, Cao Y, Zhang C, He P, Li H (2018) Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels. Chinese J Chem Eng 26:2266–2279. https://doi.org/10.1016/j.cjche.2018.07.008

    Article  CAS  Google Scholar 

  36. Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62–73. https://doi.org/10.1039/c5ee02657a

    Article  CAS  Google Scholar 

  37. Jiang X, Nie X, Gong Y, Moran CM, Wang J, Zhu J, Chang H, Guo X, Walton KS, Song C (2020) A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol. J Catal 383:283–296. https://doi.org/10.1016/j.jcat.2020.01.014

    Article  CAS  Google Scholar 

  38. Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C (2018) A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv 8(14):7651–7669. https://doi.org/10.1039/c7ra13546g

    Article  CAS  Google Scholar 

  39. Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys Chem Chem Phys 12(33):9909–9917. https://doi.org/10.1039/c001484b

    Article  CAS  PubMed  Google Scholar 

  40. Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide Interface. J Am Chem Soc 139(29):9739–9754. https://doi.org/10.1021/jacs.7b05362

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Chan SH, Sun Q (2015) Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale 7(19):8663–8683. https://doi.org/10.1039/c5nr00092k

    Article  CAS  PubMed  Google Scholar 

  42. Chiavassa DL, Collins SE, Bonivardi AL, Baltanás MA (2009) Methanol synthesis from CO2/H2 using Ga2O3–Pd/silica catalysts: kinetic modeling. Chem Eng J 150(1):204–212. https://doi.org/10.1016/j.cej.2009.02.013

    Article  CAS  Google Scholar 

  43. Wang Y, Kattel S, Gao W, Li K, Liu P, Chen JG, Wang H (2019) Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat Commun 10(1):1166. https://doi.org/10.1038/s41467-019-09072-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujitani T, Nakamura J (2000) The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl Catal A Gen 191:111–129. https://doi.org/10.1016/S0926-860X(99)00313-0

    Article  CAS  Google Scholar 

  45. Nie X, Jiang X, Wang H, Luo W, Janik MJ, Chen Y, Guo X, Song C (2018) Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catal 8(6):4873–4892. https://doi.org/10.1021/acscatal.7b04150

    Article  CAS  Google Scholar 

  46. Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane. J Catal 307:162–169. https://doi.org/10.1016/j.jcat.2013.07.023

    Article  CAS  Google Scholar 

  47. Ra EC, Kim KY, Kim EH, Lee H, An K, Lee JS (2020) Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catal 10(19):11318–11345. https://doi.org/10.1021/acscatal.0c02930

    Article  CAS  Google Scholar 

  48. Yang Y, Mei D, Peden CHF, Campbell CT, Mims CA (2015) Surface-bound intermediates in low-temperature methanol synthesis on copper: participants and spectators. ACS Catal 5(12):7328–7337. https://doi.org/10.1021/acscatal.5b02060

    Article  CAS  Google Scholar 

  49. Pasupulety N, Driss H, Alhamed YA, Alzahrani AA, Daous MA, Petrov L (2015) Studies on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2. Appl Catal A Gen 504:308–318. https://doi.org/10.1016/j.apcata.2015.01.036

    Article  CAS  Google Scholar 

  50. Tang Q, Shen Z, Huang L, He T, Adidharma H, Russell AG, Fan M (2017) Synthesis of methanol from CO2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga3Ni5(221) surface. Phys Chem Chem Phys 19(28):18539–18555. https://doi.org/10.1039/c7cp03231e

    Article  CAS  PubMed  Google Scholar 

  51. Bart JCJ, Sneeden RPA (1987) Copper-Zincoxide-Aluminamethanol catalysts revisited. Catal Today 2:1–124. https://doi.org/10.1016/0920-5861(87)80001-9

    Article  CAS  Google Scholar 

  52. Khl JS, Lee SY, Kim YG (1993) A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst. J Catal 144:414–424. https://doi.org/10.1006/jcat.1993.1342

    Article  Google Scholar 

  53. Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlogl R (2003) Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chemistry 9(9):2039–2052. https://doi.org/10.1002/chem.200204122

    Article  CAS  PubMed  Google Scholar 

  54. Choi Y, Futagami K, Fujitani T, Nakamura J (2001) The role of ZnO in Cu/ZnO methanol synthesis catalysts—morphology effect or active site model? Appl Catal A Gen 208:163–167. https://doi.org/10.1016/S0926-860X(00)00712-2

    Article  CAS  Google Scholar 

  55. Malte Behrens FS, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897. https://doi.org/10.1126/science.1219831

    Article  CAS  PubMed  Google Scholar 

  56. Frei E, Gaur A, Lichtenberg H, Zwiener L, Scherzer M, Girgsdies F, Lunkenbein T, Schlögl R (2020) Cu−Zn alloy formation as unfavored state for efficient methanol catalysts. ChemCatChem. https://doi.org/10.1002/cctc.202000777

  57. Sebastian Kuld MT, Falsig H, Elkjær CF, Helveg S, Chorkendorff I, Sehested J (2016) Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352:969–974. https://doi.org/10.1126/science.aaf0718

    Article  CAS  PubMed  Google Scholar 

  58. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355:1296–1299. https://doi.org/10.1126/science.aal3573

    Article  CAS  PubMed  Google Scholar 

  59. Zabilskiy M, Sushkevich VL, Palagin D, Newton MA, Krumeich F, van Bokhoven JA (2020) The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol. Nat Commun 11(1):2409. https://doi.org/10.1038/s41467-020-16342-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Laudenschleger D, Ruland H, Muhler M (2020) Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts. Nat Commun 11(1):3898. https://doi.org/10.1038/s41467-020-17631-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu X-K, Xia G-J, Huang Z, Rai DK, Zhao H, Zhang J, Yun J, Wang Y-G (2020) Mechanistic insight into the catalytically active phase of CO2 hydrogenation on Cu/ZnO catalyst. Appl Surf Sci 525. https://doi.org/10.1016/j.apsusc.2020.146481

  62. Martin O, Pérez-Ramírez J (2013) New and revisited insights into the promotion of methanol synthesis catalysts by CO2. Cat Sci Technol 3(12). https://doi.org/10.1039/c3cy00573a

  63. Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schlögl R, Hinrichsen O (2015) Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts. Appl Catal A Gen 502:262–270. https://doi.org/10.1016/j.apcata.2015.06.014

    Article  CAS  Google Scholar 

  64. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249(2):185–194. https://doi.org/10.1016/j.jcat.2007.04.003

    Article  CAS  Google Scholar 

  65. Prašnikar A, Pavlišič A, Ruiz-Zepeda F, Kovač J, Likozar B (2019) Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol. Ind Eng Chem Res 58(29):13021–13029. https://doi.org/10.1021/acs.iecr.9b01898

    Article  CAS  Google Scholar 

  66. Liang B, Ma J, Su X, Yang C, Duan H, Zhou H, Deng S, Li L, Huang Y (2019) Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol. Ind Eng Chem Res 58(21):9030–9037. https://doi.org/10.1021/acs.iecr.9b01546

    Article  CAS  Google Scholar 

  67. Sun X, Wang P, Shao Z, Cao X, Hu P (2019) A first-principles microkinetic study on the hydrogenation of carbon dioxide over Cu(211) in the presence of water. Sci China Chem 62(12):1686–1697. https://doi.org/10.1007/s11426-019-9639-0

    Article  CAS  Google Scholar 

  68. Zhao F, Fan L, Xu K, Hua D, Zhan G, Zhou S-F (2019) Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol. J CO2 Util 33:222–232. https://doi.org/10.1016/j.jcou.2019.05.021

    Article  CAS  Google Scholar 

  69. Dasireddy VDBC, Likozar B (2019) The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew Energ 140:452–460. https://doi.org/10.1016/j.renene.2019.03.073

    Article  CAS  Google Scholar 

  70. Godini HR, Khadivi M, Azadi M, Görke O, Jazayeri SM, Thum L, Schomäcker R, Wozny G, Repke J-U (2020) Multi-scale analysis of integrated C1 (CH4 and CO2) utilization catalytic processes: impacts of catalysts characteristics up to industrial-scale process Flowsheeting, part I: experimental analysis of catalytic low-pressure CO2 to methanol conversion. Catalysts 10(5). https://doi.org/10.3390/catal10050505

  71. Sadeghinia M, Nemati Kharat Ghaziani A, Rezaei M (2018) Component ratio dependent Cu/Zn/Al structure sensitive catalyst in CO2/CO hydrogenation to methanol. Mol Catal 456:38–48. https://doi.org/10.1016/j.mcat.2018.06.020

    Article  CAS  Google Scholar 

  72. Kim J, Jeong C, Baik JH, Suh Y-W (2020) Phases of Cu/Zn/Al/Zr precursors linked to the property and activity of their final catalysts in CO2 hydrogenation to methanol. Catal Today 347:70–78. https://doi.org/10.1016/j.cattod.2018.09.008

    Article  CAS  Google Scholar 

  73. Kourtelesis M, Kousi K, Kondarides DI (2020) CO2 hydrogenation to methanol over La2O3-promoted CuO/ZnO/Al2O3 catalysts: a kinetic and mechanistic study. Catalysts 10(2). https://doi.org/10.3390/catal10020183

  74. Zhang F, Liu Y, Xu X, Yang P, Miao P, Zhang Y, Sun Q (2018) Effect of Al-containing precursors on Cu/ZnO/Al2O3 catalyst for methanol production. Fuel Process Technol 178:148–155. https://doi.org/10.1016/j.fuproc.2018.04.021

    Article  CAS  Google Scholar 

  75. Previtali D, Longhi M, Galli F, Di Michele A, Manenti F, Signoretto M, Menegazzo F, Pirola C (2020) Low pressure conversion of CO2 to methanol over Cu/Zn/Al catalysts. The effect of Mg, Ca and Sr as basic promoters. Fuel 274. https://doi.org/10.1016/j.fuel.2020.117804

  76. Hou X-X, Xu C-H, Liu Y-L, Li J-J, Hu X-D, Liu J, Liu J-Y, Xu Q (2019) Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde. J Catal 379:147–153. https://doi.org/10.1016/j.jcat.2019.09.025

    Article  CAS  Google Scholar 

  77. Fang X, Men Y, Wu F, Zhao Q, Singh R, Xiao P, Du T, Webley PA (2019) Promoting CO2 hydrogenation to methanol by incorporating adsorbents into catalysts: effects of hydrotalcite. Chem Eng J 378. https://doi.org/10.1016/j.cej.2019.122052

  78. Smyrnioti M, Tampaxis C, Steriotis T, Ioannides T (2020) Study of CO2 adsorption on a commercial CuO/ZnO/Al2O3 catalyst. Catal Today 357:495–502. https://doi.org/10.1016/j.cattod.2019.07.024

    Article  CAS  Google Scholar 

  79. Gaikwad R, Reymond H, Phongprueksathat N, Rudolf von Rohr P, Urakawa A (2020) From CO or CO2?: space-resolved insights into high-pressure CO2 hydrogenation to methanol over Cu/ZnO/Al2O3. Cat Sci Technol 10(9):2763–2768. https://doi.org/10.1039/d0cy00050g

    Article  CAS  Google Scholar 

  80. Slotboom Y, Bos MJ, Pieper J, Vrieswijk V, Likozar B, Kersten SRA, Brilman DWF (2020) Critical assessment of steady-state kinetic models for the synthesis of methanol over an industrial Cu/ZnO/Al2O3 catalyst. Chem Eng J 389. https://doi.org/10.1016/j.cej.2020.124181

  81. Pavlišič A, Huš M, Prašnikar A, Likozar B (2020) Multiscale modelling of CO2 reduction to methanol over industrial Cu/ZnO/Al2O3 heterogeneous catalyst: linking ab initio surface reaction kinetics with reactor fluid dynamics. J Clean Prod 275. https://doi.org/10.1016/j.jclepro.2020.122958

  82. Jo DY, Lee MW, Ham HC, Lee K-Y (2019) Role of the Zn atomic arrangements in enhancing the activity and stability of the kinked Cu(2 1 1) site in CH3OH production by CO2 hydrogenation and dissociation: first-principles microkinetic modeling study. J Catal 373:336–350. https://doi.org/10.1016/j.jcat.2019.04.009

    Article  CAS  Google Scholar 

  83. Higham MD, Quesne MG, Catlow CRA (2020) Mechanism of CO2 conversion to methanol over Cu(110) and Cu(100) surfaces. Dalton T 49(25):8478–8497. https://doi.org/10.1039/d0dt00754d

    Article  CAS  Google Scholar 

  84. Noh G, Docherty SR, Lam E, Huang X, Mance D, Alfke JL, Copéret C (2019) CO2 hydrogenation to CH3OH on supported Cu nanoparticles: nature and role of Ti in bulk oxides vs isolated surface sites. J Phys Chem C 123(51):31082–31093. https://doi.org/10.1021/acs.jpcc.9b09631

    Article  CAS  Google Scholar 

  85. Shi Z, Tan Q, Wu D (2019) Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst. Appl Catal A Gen 581:58–66. https://doi.org/10.1016/j.apcata.2019.05.019

    Article  CAS  Google Scholar 

  86. Noh G, Lam E, Alfke JL, Larmier K, Searles K, Wolf P, Coperet C (2019) Selective hydrogenation of CO2 to CH3 OH on supported Cu nanoparticles promoted by isolated Ti(IV) surface sites on SiO2. ChemSusChem 12(5):968–972. https://doi.org/10.1002/cssc.201900134

    Article  CAS  PubMed  Google Scholar 

  87. Fang X, Men Y, Wu F, Zhao Q, Singh R, Xiao P, Du T, Webley PA (2019) Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH). J CO2 Util 29:57–64. https://doi.org/10.1016/j.jcou.2018.11.006

    Article  CAS  Google Scholar 

  88. Wang W, Qu Z, Song L, Fu Q (2020) CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. J Energy Chem 40:22–30. https://doi.org/10.1016/j.jechem.2019.03.001

    Article  CAS  Google Scholar 

  89. Sripada P, Kimpton J, Barlow A, Williams T, Kandasamy S, Bhattacharya S (2020) Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. J Catal 381:415–426. https://doi.org/10.1016/j.jcat.2019.11.017

    Article  CAS  Google Scholar 

  90. Qian Q, Zhang J, Cui M, Han B (2016) Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2. Nat Commun 7:11481. https://doi.org/10.1038/ncomms11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu D, Ding M, Hong X, Liu G, Tsang SCE (2020) Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst. ACS Catal 10(9):5250–5260. https://doi.org/10.1021/acscatal.0c01184

    Article  CAS  Google Scholar 

  92. Xiong S, Lian Y, Xie H, Liu B (2019) Hydrogenation of CO2 to methanol over Cu/ZnCr catalyst. Fuel 256. https://doi.org/10.1016/j.fuel.2019.115975

  93. Jiang Q, Liu Y, Dintzer T, Luo J, Parkhomenko K, Roger A-C (2020) Tuning the highly dispersed metallic Cu species via manipulating Brønsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions. Appl Catal B Environ 269. https://doi.org/10.1016/j.apcatb.2020.118804

  94. Din IU, Shaharun MS, Naeem A, Alotaibi MA, Alharthi AI, Nasir Q (2020) CO2 conversion to methanol over novel carbon nanofiber-based Cu/ZrO2 catalysts—a kinetics study. Catalysts 10(5). https://doi.org/10.3390/catal10050567

  95. Din IU, Shaharun MS, Naeem A, Tasleem S, Ahmad P (2019) Revalorization of CO2 for methanol production via ZnO promoted carbon nanofibers based Cu-ZrO2 catalytic hydrogenation. J Energy Chem 39:68–76. https://doi.org/10.1016/j.jechem.2019.01.023

    Article  Google Scholar 

  96. Deerattrakul V, Yigit N, Rupprechter G, Kongkachuichay P (2019) The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol. Appl Catal A Gen 580:46–52. https://doi.org/10.1016/j.apcata.2019.04.030

    Article  CAS  Google Scholar 

  97. Hu B, Yin Y, Zhong Z, Wu D, Liu G, Hong X (2019) Cu@ZIF-8 derived inverse ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO2 hydrogenation to methanol. Cat Sci Technol 9(10):2673–2681. https://doi.org/10.1039/c8cy02546k

    Article  CAS  Google Scholar 

  98. Stawowy M, Ciesielski R, Maniecki T, Matus K, Łużny R, Trawczynski J, Silvestre-Albero J, Łamacz A (2019) CO2 hydrogenation to methanol over Ce and Zr containing UiO-66 and Cu/UiO-66. Catalysts 10(1). https://doi.org/10.3390/catal10010039

  99. Kobayashi H, Taylor JM, Mitsuka Y, Ogiwara N, Yamamoto T, Toriyama T, Matsumura S, Kitagawa H (2019) Charge transfer dependence on CO2 hydrogenation activity to methanol in Cu nanoparticles covered with metal-organic framework systems. Chem Sci 10(11):3289–3294. https://doi.org/10.1039/c8sc05441j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu T, Hong X, Liu G (2019) In situ generation of the Cu@3D-ZrOx framework catalyst for selective methanol synthesis from CO2/H2. ACS Catal 10(1):93–102. https://doi.org/10.1021/acscatal.9b03738

    Article  CAS  Google Scholar 

  101. Mureddu M, Ferrara F, Pettinau A (2019) Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2. Appl Catal B Environ 258. https://doi.org/10.1016/j.apcatb.2019.117941

  102. Cai W, Chen Q, Wang F, Li Z, Yu H, Zhang S, Cui L, Li C (2019) Comparison of the promoted CuZnMxOy (M: Ga, Fe) catalysts for CO2 hydrogenation to methanol. Catal Lett 149(9):2508–2518. https://doi.org/10.1007/s10562-019-02825-4

    Article  CAS  Google Scholar 

  103. Hengne AM, Yuan DJ, Date NS, Saih Y, Kamble SP, Rode CV, Huang K-W (2019) Preparation and activity of copper–gallium nanocomposite catalysts for carbon dioxide hydrogenation to methanol. Ind Eng Chem Res 58(47):21331–21340. https://doi.org/10.1021/acs.iecr.9b04083

    Article  CAS  Google Scholar 

  104. Chen K, Fang H, Wu S, Liu X, Zheng J, Zhou S, Duan X, Zhuang Y, Chi Edman Tsang S, Yuan Y (2019) CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: the crucial role of Cu–LaOx interfaces. Appl Catal B Environ 251:119–129. https://doi.org/10.1016/j.apcatb.2019.03.059

    Article  CAS  Google Scholar 

  105. Hu X, Zhao C, Guan Q, Hu X, Li W, Chen J (2019) Selective hydrogenation of CO2 over a Ce promoted Cu-based catalyst confined by SBA-15. Inorg Chem Front 6(7):1799–1812. https://doi.org/10.1039/c9qi00397e

    Article  CAS  Google Scholar 

  106. Wang G, Mao D, Guo X, Yu J (2019) Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-MxOy catalysts (M=Cr, Mo and W). Int J Hydrogen Energ 44(8):4197–4207. https://doi.org/10.1016/j.ijhydene.2018.12.131

    Article  CAS  Google Scholar 

  107. Leung AHM, García-Trenco A, Phanopoulos A, Regoutz A, Schuster ME, Pike SD, Shaffer MSP, Williams CK (2020) Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol. J Mater Chem A 8(22):11282–11291. https://doi.org/10.1039/d0ta00509f

    Article  CAS  Google Scholar 

  108. Gao J, Song F, Li Y, Cheng W, Yuan H, Xu Q (2020) Cu2In Nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol. Ind Eng Chem Res 59(27):12331–12337. https://doi.org/10.1021/acs.iecr.9b06956

    Article  CAS  Google Scholar 

  109. Ye H, Na W, Gao W, Wang H (2020) Carbon-modified CuO/ZnO catalyst with high oxygen vacancy for CO2 hydrogenation to methanol. Energy Technol-Ger 8(6). https://doi.org/10.1002/ente.202000194

  110. Shi R, Mahapatra M, Kang J, Orozco I, Senanayake SD, Rodriguez JA (2020) Preparation and structural characterization of ZrO2/CuOx/Cu(111) inverse model catalysts. J Phy Chem C 124(19):10502–10508. https://doi.org/10.1021/acs.jpcc.0c00852

    Article  CAS  Google Scholar 

  111. Chen D, Mao D, Wang G, Guo X, Yu J (2019) CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method. J Sol-Gel Sci Techn 89(3):686–699. https://doi.org/10.1007/s10971-019-04924-5

    Article  CAS  Google Scholar 

  112. Luo Z, Tian S, Wang Z (2020) Enhanced activity of Cu/ZnO/C catalysts prepared by cold plasma for CO2 hydrogenation to methanol. Ind Eng Chem Res 59(13):5657–5663. https://doi.org/10.1021/acs.iecr.9b06996

    Article  CAS  Google Scholar 

  113. Tada S, Fujiwara K, Yamamura T, Nishijima M, Uchida S, Kikuchi R (2020) Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chem Eng J 381. https://doi.org/10.1016/j.cej.2019.122750

  114. Gao J, Boahene PE, Hu Y, Dalai A, Wang H (2019) Atomic layer deposition ZnO over-coated Cu/SiO2 catalysts for methanol synthesis from CO2 hydrogenation. Catalysts 9(11). https://doi.org/10.3390/catal9110922

  115. Chen K, Yu J, Liu B, Si C, Ban H, Cai W, Li C, Li Z, Fujimoto K (2019) Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst. J Catal 372:163–173. https://doi.org/10.1016/j.jcat.2019.02.035

    Article  CAS  Google Scholar 

  116. Ye J, Liu C, Mei D, Ge Q (2013) Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catal 3(6):1296–1306. https://doi.org/10.1021/cs400132a

    Article  CAS  Google Scholar 

  117. Martin O, Martin AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferre D, Perez-Ramirez J (2016) Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed Engl 55(21):6261–6265. https://doi.org/10.1002/anie.201600943

    Article  CAS  PubMed  Google Scholar 

  118. Frei MS, Mondelli C, Cesarini A, Krumeich F, Hauert R, Stewart JA, Curulla Ferré D, Pérez-Ramírez J (2020) Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catal 10(2):1133–1145. https://doi.org/10.1021/acscatal.9b03305

    Article  CAS  Google Scholar 

  119. T-y C, Cao C, T-b C, Ding X, Huang H, Shen L, Cao X, Zhu M, Xu J, Gao J, Han Y-F (2019) Unraveling highly Tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts. ACS Catal 9(9):8785–8797. https://doi.org/10.1021/acscatal.9b01869

    Article  CAS  Google Scholar 

  120. Chou C-Y, Lobo RF (2019) Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts. Appl Catal A-Genl 583. https://doi.org/10.1016/j.apcata.2019.117144

  121. Shanshan Dang BQ, Yang Y, Wang H, Cai J, Han Y, Li S, Gao P, Sun Y (2020) Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity. Sci Adv 6(5):1–11. https://doi.org/10.1126/sciadv.aaz2060

    Article  CAS  Google Scholar 

  122. Shi Z, Tan Q, Tian C, Pan Y, Sun X, Zhang J, Wu D (2019) CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: effect of reduction temperature. J Catal 379:78–89. https://doi.org/10.1016/j.jcat.2019.09.024

    Article  CAS  Google Scholar 

  123. Yao L, Shen X, Pan Y, Peng Z (2019) Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol. J Catal 372:74–85. https://doi.org/10.1016/j.jcat.2019.02.021

    Article  CAS  Google Scholar 

  124. Akkharaphatthawon N, Chanlek N, Cheng CK, Chareonpanich M, Limtrakul J, Witoon T (2019) Tuning adsorption properties of GaxIn2−xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature. Appl Surf Sci 489:278–286. https://doi.org/10.1016/j.apsusc.2019.05.363

    Article  CAS  Google Scholar 

  125. Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C (2017) A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci Adv 3:1–10. https://doi.org/10.1126/sciadv.1701290

    Article  CAS  Google Scholar 

  126. Wang J, Tang C, Li G, Han Z, Li Z, Liu H, Cheng F, Li C (2019) High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol. ACS Catal 9(11):10253–10259. https://doi.org/10.1021/acscatal.9b03449

    Article  CAS  Google Scholar 

  127. Temvuttirojn C, Poo-arporn Y, Chanlek N, Cheng CK, Chong CC, Limtrakul J, Witoon T (2020) Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts. Ind Eng Chemistry Res 59(13):5525–5535. https://doi.org/10.1021/acs.iecr.9b05691

    Article  CAS  Google Scholar 

  128. Li W, Wang K, Huang J, Liu X, Fu D, Huang J, Li Q, Zhan G (2019) MxOy-ZrO2 (M = Zn, Co, Cu) solid solutions derived from Schiff Base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation. ACS Appl Mater Interfaces 11(36):33263–33272. https://doi.org/10.1021/acsami.9b11547

    Article  CAS  PubMed  Google Scholar 

  129. Fang X, Xi Y, Jia H, Chen C, Wang Y, Song Y, Du T (2020) Tetragonal zirconia based ternary ZnO-ZrO2-MOx solid solution catalysts for highly selective conversion of CO2 to methanol at high reaction temperature. J Ind Eng Chem 88:268–277. https://doi.org/10.1016/j.jiec.2020.04.024

    Article  CAS  Google Scholar 

  130. Kattel S, Yan B, Chen JG, Liu P (2016) CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: importance of synergy between Pt and oxide support. J Catal 343:115–126. https://doi.org/10.1016/j.jcat.2015.12.019

    Article  CAS  Google Scholar 

  131. Cheol-Hyun Kima JSL, Trimm DL (2003) The preparation and characterisation of Pd–ZnO catalysts for methanol synthesis. Top Catal 22:319–324. https://doi.org/10.1023/A:1023596524663

    Article  Google Scholar 

  132. Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146. https://doi.org/10.1016/j.jcat.2016.03.017

    Article  CAS  Google Scholar 

  133. Yin Y, Hu B, Li X, Zhou X, Hong X, Liu G (2018) Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Appl Catal B Environ 234:143–152. https://doi.org/10.1016/j.apcatb.2018.04.024

    Article  CAS  Google Scholar 

  134. Díez-Ramírez J, Valverde JL, Sánchez P, Dorado F (2015) CO2 hydrogenation to methanol at atmospheric pressure: influence of the preparation method of Pd/ZnO catalysts. Catal Lett 146(2):373–382. https://doi.org/10.1007/s10562-015-1627-z

    Article  CAS  Google Scholar 

  135. Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2018) Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation. Appl Catal A-Gen 560:42–53. https://doi.org/10.1016/j.apcata.2018.04.036

    Article  CAS  Google Scholar 

  136. Díez-Ramírez J, Díaz JA, Sánchez P, Dorado F (2017) Optimization of the Pd/Cu ratio in Pd-Cu-Zn/SiC catalysts for the CO2 hydrogenation to methanol at atmospheric pressure. J CO2 Util 22:71–80. https://doi.org/10.1016/j.jcou.2017.09.012

    Article  CAS  Google Scholar 

  137. Manrique R, Jiménez R, Rodríguez-Pereira J, Baldovino-Medrano VG, Karelovic A (2019) Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd. Int J Hydrogen Energ 44(31):16526–16536. https://doi.org/10.1016/j.ijhydene.2019.04.206

    Article  CAS  Google Scholar 

  138. Ojelade OA, Zaman SF, Daous MA, Al-Zahrani AA, Malik AS, Driss H, Shterk G, Gascon J (2019) Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol. Appl Catal A-General 584. https://doi.org/10.1016/j.apcata.2019.117185

  139. Opeyemi A, Ojelade SFZ (2019) CO2 hydrogenation to methanol over PdZn/CeO2 catalyst. Chem Catal 72:732–739. https://doi.org/10.7546/crabs.2019.06.05

    Article  CAS  Google Scholar 

  140. Song J, Liu S, Yang C, Wang G, Tian H, Zhao Z-j MR, Gong J (2020) The role of Al doping in Pd/ZnO catalyst for CO2 hydrogenation to methanol. Appl Catal B:Environl 263. https://doi.org/10.1016/j.apcatb.2019.118367

  141. Yin Y, Hu B, Liu G, Zhou X, Hong X (2019) ZnO@ZIF-8 Core-Shell structure as host for highly selective and stable Pd/ZnO catalysts for hydrogenation of CO2 to methanol. Acta Phys -Chim Sin 35(3):327–336. https://doi.org/10.3866/pku.Whxb201803212

    Article  Google Scholar 

  142. Li X, Liu G, Xu D, Hong X, Edman Tsang SC (2019) Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol. J Mater Chem A 7(41):23878–23885. https://doi.org/10.1039/c9ta03410b

    Article  CAS  Google Scholar 

  143. Ahoba-Sam C, Borfecchia E, Lazzarini A, Bugaev A, Isah AA, Taoufik M, Bordiga S, Olsbye U (2020) On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty? Cat Sci Technol 10(13):4373–4385. https://doi.org/10.1039/d0cy00440e

    Article  CAS  Google Scholar 

  144. Wu D, Deng K, Hu B, Lu Q, Liu G, Hong X (2019) Plasmon-assisted Photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst. ChemCatChem 11(6):1598–1601. https://doi.org/10.1002/cctc.201802081

    Article  CAS  Google Scholar 

  145. Jiang X, Nie X, Wang X, Wang H, Koizumi N, Chen Y, Guo X, Song C (2019) Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation. J Catal 369:21–32. https://doi.org/10.1016/j.jcat.2018.10.001

    Article  CAS  Google Scholar 

  146. Lin F, Jiang X, Boreriboon N, Wang Z, Song C, Cen K (2019) Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol. Appl Catal A-Gen 585. https://doi.org/10.1016/j.apcata.2019.117210

  147. Fujitani T, MasahiroSaito YK, Watanabe T, Nakamura J, Uchijima T (1995) Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Appl Catal A-General 125:L199–L2020. https://doi.org/10.1016/0926-860X(95)00049-6

    Article  CAS  Google Scholar 

  148. Collins S, Baltanas M, Garciafierro J, Bonivardi A (2002) Gallium–hydrogen bond formation on gallium and gallium–palladium silica-supported catalysts. J Catal 211(1):252–264. https://doi.org/10.1006/jcat.2002.3734

    Article  CAS  Google Scholar 

  149. Collins S, Baltanas M, Bonivardi A (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/-GaO. J Catal 226(2):410–421. https://doi.org/10.1016/j.jcat.2004.06.012

    Article  CAS  Google Scholar 

  150. Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Grunwaldt J-D, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5(10):5827–5836. https://doi.org/10.1021/acscatal.5b01271

    Article  CAS  Google Scholar 

  151. García-Trenco A, White ER, Regoutz A, Payne DJ, Shaffer MSP, Williams CK (2017) Pd2Ga-based colloids as highly active catalysts for the hydrogenation of CO2 to methanol. ACS Catal 7(2):1186–1196. https://doi.org/10.1021/acscatal.6b02928

    Article  CAS  Google Scholar 

  152. Qu J, Zhou X, Xu F, Gong X-Q, Tsang SCE (2014) Shape effect of Pd-promoted Ga2O3 Nanocatalysts for methanol synthesis by CO2 hydrogenation. J Phys Chem C 118(42):24452–24466. https://doi.org/10.1021/jp5063379

    Article  CAS  Google Scholar 

  153. Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Kehres J, Grunwaldt JD, Chorkendorff I, Damsgaard CD (2019) Evolution of intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressure. Sci Technol Adv Mater 20(1):521–531. https://doi.org/10.1080/14686996.2019.1603886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ahmad K, Upadhyayula S (2019) Influence of reduction temperature on the formation of intermetallic Pd2Ga phase and its catalytic activity in CO2 hydrogenation to methanol. Greenh Gases 9(3):529–538. https://doi.org/10.1002/ghg.1872

    Article  CAS  Google Scholar 

  155. Snider JL, Streibel V, Hubert MA, Choksi TS, Valle E, Upham DC, Schumann J, Duyar MS, Gallo A, Abild-Pedersen F, Jaramillo TF (2019) Revealing the synergy between oxide and alloy phases on the performance of bimetallic In–Pd catalysts for CO2 hydrogenation to methanol. ACS Catal 9(4):3399–3412. https://doi.org/10.1021/acscatal.8b04848

    Article  CAS  Google Scholar 

  156. Wu P, Zaffran J, Yang B (2019) Role of surface species interactions in identifying the reaction mechanism of methanol synthesis from CO2 hydrogenation over intermetallic PdIn(310) steps. J Phys Chem C 123(22):13615–13623. https://doi.org/10.1021/acs.jpcc.9b01847

    Article  CAS  Google Scholar 

  157. Jiang H, Lin J, Wu X, Wang W, Chen Y, Zhang M (2020) Efficient hydrogenation of CO2 to methanol over Pd/In2O3/SBA-15 catalysts. J CO2 Util 36:33–39. https://doi.org/10.1016/j.jcou.2019.10.013

    Article  CAS  Google Scholar 

  158. Abdel-Mageed AM, Klyushin A, Rezvani A, Knop-Gericke A, Schlogl R, Behm RJ (2019) Negative charging of au nanoparticles during methanol synthesis from CO2/H2 on a Au/ZnO catalyst: insights from operando IR and near-ambient-pressure XPS and XAS measurements. Angew Chem Int Ed Engl 58(30):10325–10329. https://doi.org/10.1002/anie.201900150

    Article  CAS  PubMed  Google Scholar 

  159. Wiese K, Abdel-Mageed AM, Klyushin A, Behm RJ (2019) Dynamic changes of Au/ZnO catalysts during methanol synthesis: a model study by temporal analysis of products (TAP) and Zn LIII near edge X-ray absorption spectroscopy. Catal Today 336:193–202. https://doi.org/10.1016/j.cattod.2018.11.074

    Article  CAS  Google Scholar 

  160. Rezvani A, Abdel-Mageed AM, Ishida T, Murayama T, Parlinska-Wojtan M, Behm RJ (2020) CO2 reduction to methanol on Au/CeO2 catalysts: mechanistic insights from activation/deactivation and SSITKA measurements. ACS Catal 10(6):3580–3594. https://doi.org/10.1021/acscatal.9b04655

    Article  CAS  Google Scholar 

  161. Takashi Toyao SK, Zen M, Hakim Siddiki SMA, Shimizu K-i (2019) Heterogeneous Pt and MoOx Co-loaded TiO2 catalysts for low-temperature CO2 hydrogenation to form CH3OH. ACS Catal 9:8187–8196. https://doi.org/10.1021/acscatal.9b01225

    Article  CAS  Google Scholar 

  162. Gutterod ES, Lazzarini A, Fjermestad T, Kaur G, Manzoli M, Bordiga S, Svelle S, Lillerud KP, Skulason E, Oien-Odegaard S, Nova A, Olsbye U (2020) Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: deciphering the role of the metal-organic framework. J Am Chem Soc 142(2):999–1009. https://doi.org/10.1021/jacs.9b10873

    Article  CAS  PubMed  Google Scholar 

  163. Wang L, Wang L, Zhang J, Liu X, Wang H, Zhang W, Yang Q, Ma J, Dong X, Yoo SJ, Kim JG, Meng X, Xiao FS (2018) Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew Chem Int Ed Engl 57(21):6104–6108. https://doi.org/10.1002/anie.201800729

    Article  CAS  PubMed  Google Scholar 

  164. Ding L, Shi T, Gu J, Cui Y, Zhang Z, Yang C, Chen T, Lin M, Wang P, Xue N, Peng L, Guo X, Zhu Y, Chen Z, Ding W (2020) CO2 hydrogenation to ethanol over Cu@Na-Beta. Chem. https://doi.org/10.1016/j.chempr.2020.07.001

  165. Bhasin MM, Bartley WJ, Ellgen PC, Wilson TP (1978) Synthesis gas conversion over supported rhodium and rhodium-Iron catalysts. J Catal 54:120–128. https://doi.org/10.1016/0021-9517(78)90035-0

    Article  CAS  Google Scholar 

  166. Kusama H, Okabe K, Sayama K, Arakawa H (1996) CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts. Catal Today 28:261–266. https://doi.org/10.1016/0920-5861(95)00246-4

    Article  CAS  Google Scholar 

  167. Kusama H, Okabe K, Sayama K, Arakawa H (1997) Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts. Energy 22:343–348. https://doi.org/10.1016/S0360-5442(96)00095-3

    Article  CAS  Google Scholar 

  168. Bando KK, Soga K, Kunimori K, Arakawa H (1998) Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts. Appl Catal A-Gen 175:67–81. https://doi.org/10.1016/S0926-860X(98)00202-6

    Article  Google Scholar 

  169. Zilong Shao XL, Zhang S, Wang H, Sun Y (2020) CO hydrogenation to ethanol over supported Rh-based catalyst: effect of the support. Acta Phys -Chim Sin. https://doi.org/10.3866/PKU.WHXB201911053

  170. Inui T, Yamamoto T (1998) Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts. Catal Today 45:209–214. https://doi.org/10.1016/S0920-5861(98)00217-X

    Article  CAS  Google Scholar 

  171. Yang N, Medford AJ, Liu X, Studt F, Bligaard T, Bent SF, Norskov JK (2016) Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production. J Am Chem Soc 138(11):3705–3714. https://doi.org/10.1021/jacs.5b12087

    Article  CAS  PubMed  Google Scholar 

  172. Izumi Y, Kurakata H, K-i A (1998) Ethanol synthesis from carbon dioxide on [Rh10Se]/TiO2 catalyst characterized by X-ray absorption fine structure spectroscopy. J Catal 175:236–244

    Article  CAS  Google Scholar 

  173. Yang C, Mu R, Wang G, Song J, Tian H, Zhao Z-J, Gong J (2019) Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chem Sci 10:3161–3167. https://doi.org/10.1039/C8SC05608K

    Article  PubMed  PubMed Central  Google Scholar 

  174. He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B (2016) Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions. Angew Chem Int Edit 55(2):737–741. https://doi.org/10.1002/anie.201507585

    Article  CAS  Google Scholar 

  175. Ouyang B, Xiong S, Zhang Y, Liu B, Li J (2017) The study of morphology effect of Pt/Co3O 4 catalysts for higher alcohol synthesis from CO2 hydrogenation. Appl Catal A-Gen 543:189–195. https://doi.org/10.1016/j.apcata.2017.06.031

    Article  CAS  Google Scholar 

  176. Liu B, Ouyang B, Zhang Y, Lv K, Li Q, Ding Y, Li J (2018) Effects of mesoporous structure and Pt promoter on the activity of Co-based catalysts in low-temperature CO2 hydrogenation for higher alcohol synthesis. J Catal 366:91–97. https://doi.org/10.1016/j.jcat.2018.07.019

    Article  CAS  Google Scholar 

  177. Wang D, Bi Q, Yin G, Zhao W, Huang F, Xie X, Jiang M (2016) Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts. Chem Commun 52(99):14226–14229. https://doi.org/10.1039/c6cc08161d

    Article  CAS  Google Scholar 

  178. Bai S, Shao Q, Wang P, Dai Q, Wang X, Huang X (2017) Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd–Cu nanoparticles. J Am Chem Soc 139(20):6827–6830. https://doi.org/10.1021/jacs.7b03101

    Article  CAS  PubMed  Google Scholar 

  179. Caparrós FJ, Soler L, Rossell MD, Angurell I, Piccolo L, Rossell O, Llorca J (2018) Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst. Chem Cat Chem 10(11):2365–2369. https://doi.org/10.1002/cctc.201800362

    Article  CAS  Google Scholar 

  180. Takashi T, Atsushi M, Tominaga H-o (1985) Alcohol synthesis from CO2/H2 on silica-supported molybdenum catalysts. Chem Lett 14:593–594. https://doi.org/10.1246/cl.1985.593

    Article  Google Scholar 

  181. Nieskens DLS, Ferrari D, Liu Y, Kolonko R (2011) The conversion of carbon dioxide and hydrogen into methanol and higher alcohols. Catal Commun 14(1):111–113. https://doi.org/10.1016/j.catcom.2011.07.020

    Article  CAS  Google Scholar 

  182. Chen Y, Choi S, Thompson LT (2016) Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts. J Catal 343:147–156. https://doi.org/10.1016/j.jcat.2016.01.016

    Article  CAS  Google Scholar 

  183. Pei Y, Ding Y, Zang J, Song X, Dong W, Zhu H, Wang T, Chen W (2015) Fischer-Tropsch synthesis: characterizing and reaction testing of Co2C/SiO2 and Co2C/Al2O3 catalysts. Chinese J Catal 36(2). https://doi.org/10.1016/S1872-2067(14)60179-0

  184. Zhang S, Liu X, Shao Z, Wang H, Sun Y (2020) Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: studies on support effects and mechanism. J Catal 382:86–96. https://doi.org/10.1016/j.jcat.2019.11.038

    Article  CAS  Google Scholar 

  185. Wang L, He S, Wang L, Lei Y, Meng X, Xiao F-S (2019) Cobalt–nickel catalysts for selective hydrogenation of carbon dioxide into ethanol. ACS Catal 9(12):11335–11340. https://doi.org/10.1021/acscatal.9b04187

    Article  CAS  Google Scholar 

  186. Zheng J-n, An K, Wang J-m, Li J, Liu Y (2019) Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst. J Fuel Chem Technol 47(6):697–708. https://doi.org/10.1016/s1872-5813(19)30031-3

    Article  CAS  Google Scholar 

  187. Chen T-y SJ, Zhang Z, Cao C, Wang X, Si R, Liu X, Shi B, Xu J, Han Y-F (2018) Structure evolution of Co−CoOx Interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts. ACS Catal 8. https://doi.org/10.1021/acscatal.8b00453

  188. Takagawa M, Okamoto A, Fujimura H, Izawa Y, Arakawa H (1998) Ethanol synthesis from carbon dioxide and hydrogen. Stud Surf Sci Catal 114:525–528

    Article  CAS  Google Scholar 

  189. Li S, Guo H, Luo C, Zhang H, Xiong L, Chen X, Ma L (2013) Effect of iron promoter on structure and performance of K/cu–Zn catalyst for higher alcohols synthesis from CO2 hydrogenation. Catal Lett 143(4):345–355. https://doi.org/10.1007/s10562-013-0977-7

    Article  CAS  Google Scholar 

  190. An B, Li Z, Song Y, Zhang J, Zeng L, Wang C, Lin W (2019) Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat Catal 2:709–717. https://doi.org/10.1038/s41929-019-0308-5

    Article  CAS  Google Scholar 

  191. Kim JH, Fang B, Song MY, Yu J-S (2012) Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chem Mater 24(12):2256–2264. https://doi.org/10.1021/cm203520a

    Article  CAS  Google Scholar 

  192. Li Y, Gao W, Peng M, Zhang J, Sun J, Xu Y, Hong S, Liu X, Liu X, Wei M, Zhang B, Ma D (2020) Interfacial Fe5C2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols. Nat Commun 11(1):61. https://doi.org/10.1038/s41467-019-13691-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li H, Wang L, Dai Y, Pu Z, Lao Z, Chen Y, Wang M, Zheng X, Zhu J, Zhang W, Si R, Ma C, Zeng J (2018) Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat Nanotechnol 13(5):411–417. https://doi.org/10.1038/s41565-018-0089-z

    Article  CAS  PubMed  Google Scholar 

  194. Feng Jiao JL, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X Selective conversion of syngas to light olefins. Science 351(6277):1065–1067. https://doi.org/10.1126/science.aaf1835

  195. Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y (2017) Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem 9(10):1019–1024. https://doi.org/10.1038/nchem.2794

    Article  CAS  PubMed  Google Scholar 

  196. Cui X, Gao P, Li S, Yang C, Liu Z, Wang H, Zhong L, Sun Y (2019) Selective production of aromatics directly from carbon dioxide hydrogenation. ACS Catal 9(5):3866–3876. https://doi.org/10.1021/acscatal.9b00640

    Article  CAS  Google Scholar 

  197. Lin T, Qi X, Wang X, Xia L, Wang C, Yu F, Wang H, Li S, Zhong L, Sun Y (2019) Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst. Angew Chem Int Ed Engl 58(14):4627–4631. https://doi.org/10.1002/anie.201814611

    Article  CAS  PubMed  Google Scholar 

  198. Riaz A, Zahedi G, Klemeš JJ (2013) A review of cleaner production methods for the manufacture of methanol. J Clean Prod 57:19–37. https://doi.org/10.1016/j.jclepro.2013.06.017

    Article  CAS  Google Scholar 

  199. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of Formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117(14):9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. J. R. Rostrup-Nielsen in G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp (eds.) Handbook of Heterogeneous Catalysis, 2nd ed., Vol. 6, WileyVCH, Weinheim, 2920–2943, 2008, p. 2882.

  201. Struis RPWJ, Quintilii M, Stucki S (2000) Feasibility of Li-Nafion hollow fiber membranes in methanol synthesis: mechanical and thermal stability at elevated temperature and pressure. J Membrane Sci 177:215–223

    Article  CAS  Google Scholar 

  202. Gallucci F, Paturzo L, Basile A (2004) An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor. Chem Eng Process 43(8):1029–1036. https://doi.org/10.1016/j.cep.2003.10.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21776296), the National Key Research and Development Program of China (2017YFB0602203), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21090201), the Chinese Academy of Sciences (ZDRW-ZS-2018-1-3), and the Shanghai Sailing Program (19YF1453000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Yuhan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wu, Z., Liu, X. et al. A Short Review of Recent Advances in Direct CO2 Hydrogenation to Alcohols. Top Catal 64, 371–394 (2021). https://doi.org/10.1007/s11244-020-01405-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01405-w

Keywords

Navigation