Skip to main content
Log in

Convergent Normal Form for Five Dimensional Totally Nondegenerate CR Manifolds in \(\pmb {{\mathbb {C}}^4}\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Applying the equivariant moving frames method, we construct a convergent normal form for real-analytic 5-dimensional totally nondegenerate submanifolds of \({\mathbb {C}}^4\). We develop this construction by applying further normalizations, the possibility of which completely relies upon vanishing/non-vanishing of some specific coefficients of the normal form. This in turn divides the class of our CR manifolds into several biholomorphically inequivalent subclasses, each of them has its own specified normal form with no further possible normalization applicable on it. It also is shown that, biholomorphically, Beloshapka’s cubic model is the unique member of this class with the maximum possible dimension seven of the corresponding algebra of infinitesimal CR automorphisms. Our results are also useful in the study of biholomorphic equivalence problem between CR manifolds, in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. There is some technical reason for indicating a bit unnaturally the indices j as \(u_j\) and \(v^j\).

  2. Contact forms play no essential role in this study.

  3. Indeed, the reason is that the degree of indeterminancy of the system (49) is zero (cf. [23, Definition 11.2]).

References

  1. Arnaldsson, O.: Involutive moving frames. PhD.Thesis, University of Minnesota (2017)

  2. Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real Submanifolds in Complex Space and Their Mappings. Princeton University Press, Princeton (1999)

    Book  Google Scholar 

  3. Beloshapka, V.K.: Universal models for real submanifolds. Math. Notes 75(4), 475–488 (2004)

    Article  MathSciNet  Google Scholar 

  4. Beloshapka, V.K., Ezhov, V.V., Schmalz, G.: Holomorphic classification of four-dimensional surfaces in \({\mathbb{C}}^3\). Izv. Math. 72(3), 413–427 (2008)

    Article  MathSciNet  Google Scholar 

  5. Berchenko, I.A., Olver, P.J.: Symmetries of polynomials. Symb. Comput. 29, 485–514 (2000)

    Article  MathSciNet  Google Scholar 

  6. Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. I. Ann. Mat. Pura Appl. 11(4), 17–90 (1932)

    MATH  Google Scholar 

  7. Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. II. Ann. Scuola Norm. Sup. Pisa 1(2), 333–354 (1932)

    MATH  Google Scholar 

  8. Cartan, É.: La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés, Exposés de Géométrie, no. 5. Hermann, Paris (1935)

  9. Chern, S.S., Moser, Y.: Real hypersurfaces in complex spaces. Acta Math. 133, 219–271 (1974)

    Article  MathSciNet  Google Scholar 

  10. Ebenfelt, P.: Normal forms and biholomorphic equivalence of real hypersurfaces in \({\mathbb{C}}^3\). Indiana Univ. Math. J. 47(2), 311–366 (1998)

    Article  MathSciNet  Google Scholar 

  11. Fels, M., Olver, P.J.: Moving coframes: II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MathSciNet  Google Scholar 

  12. Jacobowitz, H.: An Introduction to CR Structures. Math. Surveys and Monographs 32. AMS, Providence (1990)

  13. Kolář, M.: Normal forms for hypersurfaces of finite type in \({\mathbb{C}}^2\). Math. Res. Lett. 12, 897–910 (2005)

    Article  MathSciNet  Google Scholar 

  14. Kolář, M.: Finite type hypersurfaces with divergent normal form. Math. Ann. 354(3), 813–825 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kolář, M., Kossovskiy, I., Zaitsev, D.: Normal forms in Cauchy–Riemann geometry. Contemp. Math. 681, 153–177 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kossovskiy, I., Zaitsev, D.: Convergent normal form and canonical connection for hypersurfaces of finite type in \(\mathbb{C}^2\). Adv. Math. 281, 670–705 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kossovskiy, I., Zaitsev, D.: Convergent normal form for real hypersurfaces at a generic Levi-degeneracy. J. Reine Angew Math. 749, 201–225 (2019)

    Article  MathSciNet  Google Scholar 

  18. Krantz, S.G.: Function Theory of Several Complex Variables, 2nd ed., AMS Chelsea Pub., xvi+564 pp (2001)

  19. Loboda, A.V.: Homogeneous real hypersurfaces in \({\mathbb{C}}^3\) with two-dimensional isotropy groups. Proc. Steklov Inst. Math. 235(4), 107–135 (2001)

    Google Scholar 

  20. Loboda, A.V.: Determination of a homogeneous strictly pseudoconvex surface from the coefficients of its normal equations. Math. Notes 73(3), 419–423 (2003)

    Article  MathSciNet  Google Scholar 

  21. Merker, J., Sabzevari, M.: Cartan equivalence problem for \(5\)-dimensional bracket-generating CR-manifolds in \({\mathbb{C}}^4\). Geom. Anal., 26(4), 3194–3251 (2016); expanded form arXiv:1401.4297v1

  22. Merker, J., Pocchiola, S., Sabzevari, M.: Equivalences of 5-dimensional CR-manifolds II: General classes \({{\sf I}}\), \({{\sf II}}\), \({{\sf III}}_1\), \({{\sf III}}_2\), \({{\sf IV}}_1\), \({{\sf IV}}_2\). arXiv:1311.5669v1

  23. Olver, P.J.: Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  24. Olver, P.J.: A survey of moving frames. In: Li, H., Olver, P.J., Sommer, G. (eds.) Computer Algebra and Geometric Algebra with Applications. Lecture Notes in Computer Science, vol. 3519, pp. 105–138. Springer, New York (2005)

    Chapter  Google Scholar 

  25. Olver, P.J.: Generating differential invariants. Math. Anal. Appl. 333, 450–471 (2007)

    Article  MathSciNet  Google Scholar 

  26. Olver, P.J.: Normal forms for submanifolds under group actions. In: Kac, V.G. et al. (eds.) Springer Sym. Differential Equations and Their Applications. Proceedings in Mathematics & Statistics, pp. 1–25 (2018)

  27. Olver, P.J., Pohjanpelto, J.: Maurer–Cartan forms and the structure of Lie pseudo groups. Sel. Math. New Ser. 11, 99–126 (2005)

    Article  MathSciNet  Google Scholar 

  28. Olver, P.J., Pohjanpelto, J.: Moving frames for Lie pseudo-groups. Can. J. Math. 60(2), 1336–1386 (2008)

    Article  MathSciNet  Google Scholar 

  29. Sabzevari, M.: Maple worksheet of the corresponding computations. Available on demand

  30. Sabzevari, M., Spiro, A.: On the geometric order of totally nondegenerate CR manifolds. Math. Z. 296, 185–210 (2020)

    Article  MathSciNet  Google Scholar 

  31. Shemyakova, E.: Invariants for Darboux transformations of arbitrary order for \(D_x D_y+aD_x+bD_y+c\). Geometric Methods in Physics. XXXI Workshop 2012. Trends in Mathematics, pp. 155–162 (2013)

  32. Shemyakova, E., Mansfield, E.L.: Moving frames for Laplace invariants. In: Jeffrey, D. (ed.) Proceedings ISSAC 2008, pp. 295–302. ACM, New York (2008)

    Google Scholar 

  33. Valiquette, F.: Equivariant moving frame method and the local equivalence of \(u_{xx}=r(x, u, v, u_x, v_x)\) under fiber-preserving transformations. J. Dyn. Contin. Syst. 17(4), 555–589 (2011)

    Article  Google Scholar 

  34. Valiquette, F.: Solving local equivalence problems with the equivariant moving frame method. Sym. Int. Geom. Meth. Appl. (SIGMA), 9 029, 43 pp (2013)

  35. Webster, S.M.: On the Moser normal form at a non-umbilic point. Math. Ann. 233, 97–102 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author gratefully expresses his sincere thanks to Peter Olver and Francis Valiquette for their helpful comments and discussions during the preparation of this paper. He is also very grateful to Maria Stepanova who noted via a counterexample the existence of a certain error concerning the results of Branch 3-3-1 in the first version of this paper. Grateful thanks are also addressed to an anonymous referee for a careful reading and for insightful suggestions. The research of the author was supported in part by a grant from IPM, No. 98510420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Sabzevari.

Additional information

Dedicated to Professor Peter J. Olver.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabzevari, M. Convergent Normal Form for Five Dimensional Totally Nondegenerate CR Manifolds in \(\pmb {{\mathbb {C}}^4}\). J Geom Anal 31, 7900–7946 (2021). https://doi.org/10.1007/s12220-020-00558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00558-0

Keywords

Mathematics Subject Classification

Navigation