Skip to main content
Log in

Littlewood–Paley–Stein Functions for Hodge-de Rham and Schrödinger Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the Littlewood–Paley–Stein functions associated with Hodge-de Rham and Schrödinger operators on Riemannian manifolds. Under conditions on the Ricci curvature, we prove their boundedness on \(L^p\) for p in some interval \((p_1,2]\) and make a link to the Riesz Transform. An important fact is that we do not make assumptions of doubling measure or estimates on the heat kernel in this case. For \(p > 2\), we give a criterion to obtain the boundedness of the vertical Littlewood–Paley–Stein function associated with Schrödinger operators on \(L^p\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assaad, J., Ouhabaz, E.M.: Riesz transforms of Schrödinger operators on manifolds. J. Geom. Anal. 22(4), 1108–1136 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bakry, D.: Etude des transformations de Riesz dans les variétés riemanniennes àcourbure de Ricci minorée. In: Séminaire de Probabilités. Lecture Notes in Mathemactics, vol. XXI, pp. 137–172. Springer, Berlin (1987)

  3. Carron, G.: Inégalités de Hardy sur les variétés Riemanniennes non-compactes. J. Math. Pures Appl. (9) 76(10), 883–891 (1997)

    Article  MathSciNet  Google Scholar 

  4. Carron, G., Coulhon, T., Hassell, A.: Riesz transform and \(L^p\)-cohomology for manifolds with Euclidean ends. Duke Math. J. 133(1), 59–93 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chen, P., Magniez, J., Ouhabaz, E.M.: The Hodge-de Rham Laplacian and Lp-boundedness of Riesz transforms on non-compact manifolds. Nonlinear Anal. 125, 75–98 (2015)

    MATH  Google Scholar 

  6. Coulhon, T., Duong, X.T.: Riesz transforms for \(1\le p\le 2\). Trans. Am. Math. Soc. 351(3), 1151–1169 (1999)

    Article  Google Scholar 

  7. Coulhon, T., Duong, X.T.: Riesz transform and related inequalities on non-compact Riemannian manifolds. Commun. Pure Appl. Math. 56(12), 1728–1751 (2003)

    Article  Google Scholar 

  8. Coulhon, T., Duong, X.T., Li, X.D.: Littlewood–Paley–Stein functions on complete Riemannian manifolds for \(1\le p\le 2\). Stud. Math. 154(1), 37–57 (2003)

    Article  Google Scholar 

  9. Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded \({H}^\infty \) functional calculus. J. Aust. Math. Soc. Ser. A 60(1), 51–89 (1996)

    Article  MathSciNet  Google Scholar 

  10. Grigor’yan, A., Saloff-Coste, L.: Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble) 55(3), 825–890 (2005)

    Article  MathSciNet  Google Scholar 

  11. Lohoué, N.: Estimation des fonctions de Littlewood–Paley–Stein sur les variétés riemanniennes àcourbure non positive. Ann. Sci. Ecole Norm. Sup. 20(4), 505–544 (1987)

    Article  MathSciNet  Google Scholar 

  12. Magniez, J.: Riesz transforms of the Hodge-de Rham Laplacian on Riemannian manifolds. Math. Nachr. 289(8–9), 1021–1043 (2016)

    Article  MathSciNet  Google Scholar 

  13. McGillivray, I., Ouhabaz, E.M.: Existence of bounded invariant solutions for absorption semigroups. In: Differential Equations, Asymptotic Analysis, and Mathematical Physics (Potsdam, 1996). Math. Res., vol. 100, pp. 226–241. Akademie Verlag, Berlin (1997)

  14. Le Merdy, C., Xu, Q.: Maximal theorems and square functions for analytic operators on \(L^p\)-spaces. J. Lond. Math. Soc. (2) 86(2), 343–365 (2012)

  15. Meyer, P.: Démonstration probabiliste de certaines inégalités de Littlewood–Paley II : les inégalités classiques. In: Séminaire de Probabilité. Lecture Notes in Mathematics, vol. X, pp. 125–141. Springer, Berlin (1974/1975)

  16. Meyer, P.: Démonstration probabiliste de certaines inégalités de Littlewood–Paley III: les inégalités générales. In: Séminaire de Probabilités. Lecture Notes in Mathematics, vol. X, pp. 164–174. Springer, Berlin (1974/1975)

  17. Murata, M.: Structure of positive solutions to \((-\Delta +V)u=0\) in \({ R}^n\). Duke Math. J. 53(4), 869–943 (1986)

    Article  MathSciNet  Google Scholar 

  18. Ouhabaz, E.M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton, NJ (2005)

  19. Ouhabaz, E.M.: Littlewood–Paley–Stein functions for Schrödinger operators. In: Hassan II Academy of Sciences and Technology of Morocco (ed.) Frontiers in Sciences and Engineerings, vol. 6, pp. 99–109 (2016). See also arXiv: 1705.06794

  20. Rosenberg, S.: The Laplacian on a Riemannian manifold. London Mathematical Society Student Texts, vol. 31. Cambridge University Press, Cambridge (1997). An introduction to analysis on manifolds

  21. Stein, E.M.: On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958)

    Article  MathSciNet  Google Scholar 

  22. Stein, E.M.: Topics in harmonic analysis related to the Littlewood–Paley theory. In: Annals of Mathematics Studies, No. 63. Princeton University Press/University of Tokyo Press, Tokyo/Princeton, NJ (1970)

Download references

Acknowledgements

The author would like to thank his PhD supervisor El Maati Ouhabaz for his help and advice during the preparation of this article. This research is partly supported by the ANR project RAGE ”Analyse Réelle et Géométrie” (ANR-18-CE40-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Cometx.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cometx, T. Littlewood–Paley–Stein Functions for Hodge-de Rham and Schrödinger Operators. J Geom Anal 31, 7568–7594 (2021). https://doi.org/10.1007/s12220-020-00569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00569-x

Keywords

Mathematics Subject Classification

Navigation