Skip to main content
Log in

Utilising grassland management and climate data for more accurate prediction of herbage mass using the rising plate meter

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Efficient grass-based livestock production depends on precise allocation of pasture to the herd in the form of herbage mass (HM). Accurate measurement of HM results in increased utilisation of grass in the herd’s diet and consequently reductions in whole-farm feed inputs, emissions and costs. The rising plate meter (RPM) is an established method of estimating HM, but there is scope to improve its accuracy. Real-time meteorological data and pasture management information have never been analysed in combination with the RPM. This study aimed to utilise such data to improve the accuracy of HM prediction using multiple linear regression (MLR) and machine learning through the random forest (RF) algorithm. Seventeen variables were assessed and models were evaluated in terms of relative prediction error (RPE). Decreases of 6–12% RPE were observed for the MLR models compared with conventional models. Further decreases of 11–17% were recorded for RF models. An MLR model comprising of management data that were readily available to farmers was deemed optimum for on-farm use and included coefficients for: compressed sward height (mm), nitrogen fertiliser rate (kg ha−1) and grazing rotation number (RMSE = 324 kg DM ha−1). The addition of meteorological variables resulted in a further 0.9% decrease in RPE (RMSE = 312 kg DM ha−1), but was not practical considering the expense of on-farm meteorological sensors. The RF model with meteorological variables (RMSE = 262 kg DM ha−1) had 1.5% lower RPE compared with the RF model without (RMSE = 243 kg DM ha−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews, M., Scholefield, D., Abberton, M. T., McKenzie, B. A., Hodge, S., & Raven, J. A. (2007). Use of white clover as an alternative to nitrogen fertiliser for dairy pastures in nitrate vulnerable zones in the UK: Productivity, environmental impact and economic considerations. Annals of Applied Biology, 151, 11–23. https://doi.org/10.1111/j.1744-7348.2007.00137.x.

    Article  CAS  Google Scholar 

  • Beecher, M., Hennessy, D., Boland, T. M., McEvoy, M., O’Donovan, M., & Lewis, E. (2015). The variation in morphology of perennial ryegrass cultivars throughout the grazing season and effects on organic matter digestibility. Grass and Forage Science, 70, 19–29. https://doi.org/10.1111/gfs.12081.

    Article  Google Scholar 

  • Beukes, P. C., McCarthy, S., Wims, C. M., Gregorini, P., & Romera, A. J. (2019). Regular estimates of herbage mass can improve profitability of pasture-based dairy systems. Animal Production Science, 59, 359–367. https://doi.org/10.1071/AN17166.

    Article  Google Scholar 

  • Braga, G., Pedreira, C., Herling, V., Luz, P., Aparecido Marchesin, W., & Macedo, F. (2009). Quantifying herbage mass on rotationally stocked palisadegrass pastures using indirect methods. Scientia Agricola, 66, 127–131. https://doi.org/10.1590/S0103-90162009000100018.

    Article  Google Scholar 

  • Castle, M. E. (1976). A simple disc instrument for estimating herbage yield. Grass and Forage Science, 31, 37–40.

    Article  Google Scholar 

  • Claffey, A., Delaby, L., Galvin, N., Boland, T. M., & Egan, M. (2019). The effect of spring grass availability and grazing rotation length on the production and quality of herbage and milk in early spring. Journal of Agricultural Science, 157, 434–448. https://doi.org/10.1017/S0021859619000613.

    Article  CAS  Google Scholar 

  • Cookson, W. R., Rowarth, J. S., & Cameron, K. C. (2000). The response of a perennial ryegrass (Lolium perenne L.) seed crop to nitrogen fertilizer application in the absence of moisture stress. Grass and Forage Science, 55, 314–325. https://doi.org/10.1046/j.1365-2494.2000.00233.x.

    Article  Google Scholar 

  • Dale, A. J., Mayne, C. S., Laidlaw, A. S., & Ferris, C. P. (2008). Effect of altering the grazing interval on growth and utilization of grass herbage and performance of dairy cows under rotational grazing. Grass and Forage Science, 63, 257–269. https://doi.org/10.1111/j.1365-2494.2008.00631.x.

    Article  Google Scholar 

  • De Silva, A. M., & Leong, P. H. W. (2015). Feature selection. In J. Kacprzyk (Ed.), Grammar-based feature generation for time-series prediction (pp. 13–24). New York, USA: Springer.

    Google Scholar 

  • Defrance, P., Delaby, L., & Seuret, J. M. (2004). Mieux connaître la densité de l'herbe pour calculer la croissance, la biomasse d'une parcelle et le stock d'herbe disponible d'une exploitation (To know better know the density of the grass to calculate the growth, the biomass of a plot and available grass stock of a farm). In Proceedings of Rencontres autour des Recherches sur les Ruminants 11 (pp. 291–294). Paris, France: INRAE.

  • Dillard, S., Hafla, A., Rubano, M., Stout, R., Brito, A., & Soder, K. (2016). Evaluation of a rising plate meter for use in multispecies swards. Agricultural & Environmental Letters, 1(1), 1–4. https://doi.org/10.2134/ael2016.08.0032.

    Article  Google Scholar 

  • Dillon, P. (2006). Achieving high dry-matter intake from pasture with grazing dairy cow. In A. Elgersma, J. Dijkstra, & S. Tamminga (Eds.), Fresh herbage for dairy cattle (pp. 1–26). New York, USA: Springer. https://doi.org/10.1007/978-1-4020-5452-5_1.

    Chapter  Google Scholar 

  • Dillon, P. (2011). The Irish dairy industry-Planning for 2020. In Proceedings of National Dairy Conference 2011 (pp. 1–24). Oak Park, Carlow, Ireland: Teagasc.

  • Dillon, P., Hennessy, T., Shalloo, L., Thorne, F., & Horan, B. (2008). Future outlook for the Irish dairy industry: A study of international competitiveness, influence of international trade reform and requirement for change. International Journal of Dairy Technology, 61, 16–29. https://doi.org/10.1111/j.1471-0307.2008.00374.x.

    Article  Google Scholar 

  • Douglas, J. T., & Crawford, C. E. (1994). An evaluation of the drop-disc technique for measurements of herbage production in ryegrass for silage. Grass and Forage Science, 49, 252–255. https://doi.org/10.1111/j.1365-2494.1994.tb01998.x.

    Article  Google Scholar 

  • Earle, D., & McGowan, A. (1979). Evaluation and calibration of an automated rising plate meter for estimating dry matter yield of pasture. Australian Journal of Experimental Agriculture, 19, 337–343. https://doi.org/10.1071/EA9790337.

    Article  Google Scholar 

  • Enriquez-Hidalgo, D., Gilliland, T. J., Egan, M., & Hennessy, D. (2018). Production and quality benefits of white clover inclusion into ryegrass swards at different nitrogen fertilizer rates. Journal of Agricultural Science, 156, 378–386. https://doi.org/10.1017/S0021859618000370.

    Article  Google Scholar 

  • Fehmi, J. S., & Stevens, J. M. (2009). A plate meter inadequately estimated herbage mass in a semi-arid grassland. Grass and Forage Science, 64, 322–327. https://doi.org/10.1111/j.1365-2494.2009.00694.x.

    Article  Google Scholar 

  • Fernandez, A. R., & Rodriguez, A. G. (2013). Sward factors influence on pasture dry matter intake of grazing dairy cows: A review. Iranian Journal of Applied Animal Science, 3, 629–652.

    Google Scholar 

  • Ferraro, F. P., Nave, R. L. G., Sulc, R. M., & Barker, D. J. (2012). Seasonal variation in the rising plate meter calibration for forage mass. Agronomy Journal, 104, 1–6. https://doi.org/10.2134/agronj2011.0190.

    Article  Google Scholar 

  • Fuentes-Pila, J., DeLorenzo, M. A., Beede, D. K., Staples, C. R., & Holter, J. B. (1996). Evaluation of equations based on animal factors to predict intake of lactating holstein cows1. Journal of Dairy Science, 79, 1562–1571. https://doi.org/10.3168/jds.S0022-0302(96)76518-9.

    Article  CAS  PubMed  Google Scholar 

  • Gabriëls, P. C. J., & van den Berg, J. V. (1993). Calibration of two techniques for estimating herbage mass. Grass and Forage Science, 48, 329–335. https://doi.org/10.1111/j.1365-2494.1993.tb01866.x.

    Article  Google Scholar 

  • Griffith, V., O’Donovan, M., Geoghegan, A., & Shalloo, L. (2014). PastureBase Ireland—the measurement of grass dry matter production on grassland farms. In Proceedings of 25th General Meeting of the European Grassland Federation (pp. 279–281). Aberystwyth, UK: Organising Committee of the 25th General Meeting of the European Grassland Federation IBERS.

  • Hanrahan, L., Geoghegan, A., O’Donovan, M., Griffith, V., Ruelle, E., Wallace, M., et al. (2017). PastureBase Ireland: A grassland decision support system and national database. Computers and Electronincs in Agriculture, 136, 193–201. https://doi.org/10.1016/j.compag.2017.01.029.

    Article  Google Scholar 

  • Hanrahan, L., McHugh, N., Hennessy, T., Moran, B., Kearney, R., Wallace, M., et al. (2018). Factors associated with profitability in pasture-based systems of milk production. Journal of Dairy Science, 101, 5474–5485. https://doi.org/10.3168/jds.2017-13223.

    Article  CAS  PubMed  Google Scholar 

  • Harris, S. L., Thom, E. R., & Clark, D. A. (1996). Effect of high rates of nitrogen fertiliser on perennial ryegrass growth and morphology in grazed dairy pasture in northern New Zealand. New Zealand Journal of Agricultural Research, 39, 159–169. https://doi.org/10.1080/00288233.1996.9513174.

    Article  Google Scholar 

  • Herrmann, A., Kelm, M., Kornher, A., & Taube, F. (2005). Performance of grassland under different cutting regimes as affected by sward composition, nitrogen input, soil conditions and weather—A simulation study. European Journal of Agronomy, 22, 141–158. https://doi.org/10.1016/j.eja.2004.02.002.

    Article  Google Scholar 

  • Higgins, S., & Bailey, J. S. (2017). The role of precision agriculture in optimising soil nutrient status and grassland productivity in Northern Ireland, while Reducing Nutrient Losses to Air or Water. In Proceedings of Science and policy: Nutrient management challenges for the next generation (pp. 1–7). Palmerston North, New Zealand: Massey University

  • Höglind, M., & Frankow-Lindberg, B. (1998). Growing point dynamics and spring growth of white clover in a mixed sward and the effects of nitrogen application. Grass and Forage Science, 53, 338–345. https://doi.org/10.1046/j.1365-2494.1998.00141.x.

    Article  Google Scholar 

  • Holshof, G., Stienezen, M., Galama, P., Pol-van Dasselaar, A., Aarts, H., & Vliegher, A. et al. (2015). Calibration of five rising plate meters in the Netherlands. In Proceedings of Grassland and forages in high output dairy farming systems. Proceedings of the 18th Symposium of the European Grassland Federation (pp. 233–235). Wageningen, The Netherlands: Organising Committee of the 18th Symposium of the European Grassland Federation 2015 and the Nederlandse Vereniging voor Weide-en Voederbouw (NWVW).

  • Hunt, W. F., & Field, T. R. (1979). Growth characteristics of perennial rye grass. In Proceedings of New Zealand Grassland Association (pp. 104–113). Dunedin, New Zealnd: New Zealand Grassland Association.

  • Itano, S., Tomimatsu, H., Nakagami, K., & Maeda, Y. (2012). Incorporating a periodic function into an equation for estimating herbage mass in Zoysia-dominated pastures from rising plate readings. Grassland Science, 58, 127–132. https://doi.org/10.1111/j.1744-697X.2012.00253.x.

    Article  Google Scholar 

  • Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., et al. (2016). Random forests for global and regional crop yield predictions. PLoS ONE, 11, e0156571. https://doi.org/10.1371/journal.pone.0156571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan, C., Shi, Z., Bailey, J. S., & Higgins, A. J. (2003). Sampling strategies for mapping “within-field” variability in the dry matter yield and mineral nutrient status of forage grass crops in cool temperate climes. Precision Agriculture, 4, 69–86. https://doi.org/10.1023/A:1021815122216.

    Article  Google Scholar 

  • King, W. M., Rennie, G. M., Dalley, D. E., Dynes, R. A., & Upsdell, M. P. (2010). Pasture mass estimation by the C-DAX pasture meter: Regional calibrations for New Zealand. In Proceedings of The 4th Australasian Dairy Science Symposium (pp. 233–238). Wellington, NZ: The New Zealand Veterinary Association.

  • Klootwijk, C. W., Holshof, G., de Boer, I. J. M., Van den Pol-Van Dasselaar, A., Engel, B. V., & Middelaar, C. E. (2019a). Correcting fresh grass allowance for rejected patches due to excreta in intensive grazing systems for dairy cows. Journal of Dairy Science, 102, 10451–10459. https://doi.org/10.3168/jds.2018-16120.

    Article  CAS  PubMed  Google Scholar 

  • Klootwijk, C. W., Holshof, G., van den Pol-van Dasselaar, A., van Helvoort, K. L. M., Engel, B., de Boer, I. J. M., et al. (2019b). The effect of intensive grazing systems on the rising plate meter calibration for perennial ryegrass pastures. Journal of Dairy Science, 102, 10439–10450. https://doi.org/10.3168/jds.2018-16118.

    Article  CAS  PubMed  Google Scholar 

  • L’Huillier, P. J., & Thomson, N. A. (1988). Estimation of herbage mass in ryegrass/white clover dairy pastures. Proceedings of New Zealand Grassland Association, 49, 117–122.

    Article  Google Scholar 

  • Lile, J., Blackwell, M., Thomson, N., Penno, J., Macdonald, K., Nicholas, P., et al. (2001). Practical use of the rising plate meter (RPM) on New Zealand dairy farms. Proceedings of the New Zealand Grassland Association, 63, 159–164.

    Article  Google Scholar 

  • Litherland, A. J., Webby, R. R. J., Fraser, T. A., Matthew, C. O., McCleod, K. A., Walcroft, J., et al. (2008). Indirect measurement of pasture mass and pasture growth rate on sheep and beef pastures. Proceedings of the New Zealand Grassland Association, Blenheim, New Zealand Grassland Association, 70, 137–144.

    Article  Google Scholar 

  • Maher, J., & Bogue, F. (2018). Grass 10—An extension campaign to improve the level of grass production and utilisation. In Proceedings of Sustainable meat and milk production from grasslands 27th General Meeting of the European Grassland Federation (pp. 956–958). Cork, Ireland: The Organising Committee of the 27th General Meeting of the European Grassland Federation.

  • Martin, R. C., Astatkie, T., Cooper, J. M., & Fredeen, A. H. (2005). A comparison of methods used to determine biomass on naturalized swards. Journal of Agronomy and Crop Science, 191, 152–160. https://doi.org/10.1111/j.1439-037X.2004.00145.x.

    Article  Google Scholar 

  • Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46, 68–78. https://doi.org/10.1080/01621459.1951.10500769.

    Article  Google Scholar 

  • McDonnell, J., Brophy, C., Ruelle, E., Shalloo, L., Lambkin, K., & Hennessy, D. (2019). Weather forecasts to enhance an Irish grass growth model. European Journal of Agronomy, 105, 168–175. https://doi.org/10.1016/j.eja.2019.02.013.

    Article  Google Scholar 

  • McEvoy, M., O’Donovan, M., & Shalloo, L. (2011). Development and application of an economic ranking index for perennial ryegrass cultivars. Journal of Dairy Science, 94, 1627–1639. https://doi.org/10.3168/jds.2010-3322.

    Article  CAS  PubMed  Google Scholar 

  • McSweeney, D., Coughlan, N. E., Cuthbert, R. N., Halton, P., & Ivanov, S. (2019). Micro-sonic sensor technology enables enhanced grass height measurement by a Rising Plate Meter. Information Processing in Agriculture, 6, 279–284. https://doi.org/10.1016/j.inpa.2018.08.009.

    Article  Google Scholar 

  • Met Éireann. (2018). Warm dry weather of June and July 2018. Dublin, Ireland: Met Éireann.

    Google Scholar 

  • Met Éireann. (2019). Historical data. Retrieved October 30, 2019 from https://www.met.ie/climate/available-data/historical-data.

  • Michell, P., & Large, R. V. (1983). The estimation of herbage mass of perennial ryegrass swards: A comparative evaluation of a rising-plate meter and a single-probe capacitance meter calibrated at and above ground level. Grass and Forage Science, 38, 295–299. https://doi.org/10.1111/j.1365-2494.1983.tb01652.x.

    Article  Google Scholar 

  • Moloney, T., Sheridan, H., Grant, J., O’Riordan, E. G., & O’Kiely, P. (2020). Yield of binary- and multi-species swards relative to single-species swards in intensive silage systems. Irish Journal of Agricultural and Food Research, 59, 12–26. https://doi.org/10.2478/ijafr-2020-0002.

    Article  CAS  Google Scholar 

  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Variable selection and model building. Introduction to linear regression analysis (5th ed., Vol. 821, pp. 327–371). Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Murphy, D. J., O’Brien, B., Hennessy, D., Hurley, M. A., & Murphy, M. D. (2020). Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards. Precision Agriculture In press. https://doi.org/10.1007/s11119-020-09765-9.

    Article  Google Scholar 

  • Murphy, D. J., O’Brien, B., & Murphy, M. D. (2020). Development of a grass measurement optimisation tool to efficiently measure herbage mass on grazed pastures. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2020.105799.

    Article  Google Scholar 

  • Murphy, M. D., O’Mahony, M. J., Shalloo, L., French, P., & Upton, J. (2014). Comparison of modelling techniques for milk-production forecasting. Journal of Dairy Science, 97, 3352–3363. https://doi.org/10.3168/jds.2013-7451.

    Article  CAS  PubMed  Google Scholar 

  • Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. https://doi.org/10.1016/j.jag.2012.03.012.

    Article  Google Scholar 

  • Nakagami, K. (2016). Effects of sites and years on the coefficients of rising plate meter calibration under varying coefficient models. Grassland Science, 62, 128–132. https://doi.org/10.1111/grs.12117.

    Article  Google Scholar 

  • Nakagami, K., & Itano, S. (2013). Improving pooled calibration of a rising-plate meter for estimating herbage mass over a season in cool-season grass pasture. Grass and Forage Science, 69, 717–723. https://doi.org/10.1111/gfs.12070.

    Article  Google Scholar 

  • Ngo, T. H. D., & La Puente, C. (2012). The steps to follow in a multiple regression analysis. In Proceedings of Statistical Analysis System Global Forum (p. 333). Pennsylvania, USA: Citeseer.

  • Nikoloski, S., Murphy, P., Kocev, D., Džeroski, S., & Wall, D. P. (2019). Using machine learning to estimate herbage production and nutrient uptake on Irish dairy farms. Journal of Dairy Science, 102, 10639–10656. https://doi.org/10.3168/jds.2019-16575.

    Article  CAS  PubMed  Google Scholar 

  • O’Donovan, M. (2000) The relationship between the performance of dairy cows and grassland management practice on intensive dairy farms in Ireland (PhD Thesis), National University of Ireland.

  • O’Donovan, M., Delaby, L. (2016). Grazed grass in the dairy cow diet—How this can be achieved better. In Proceedings of 26th EGF General Meeting on “The Multiple Roles of Grassland in the European Bioeconomy” (pp. 350–365). Ås, Norway: Organising Committee of the 26th General Meeting of the European Grassland Federation, NIBIO.

  • O’Donovan, M., Dillon, P., Rath, M., & Stakelum, G. (2002). A Comparison of four methods of herbage mass estimation. Irish Journal of Agricultural and Food Research, 41, 17–27.

    Google Scholar 

  • O’Sullivan, M., O’Keeffe, W. F., & Flynn, M. J. (1987). The value of pasture height in the measurement of dry matter yield. Irish Journal of Agricultural Research, 26, 63–68.

    Google Scholar 

  • O’Riordan, E. G., O’Kiely, P., & Keane, M. G. (1998). Efficient beef production from grazed pasture. Retrieved June 17, 2020 from https://t-stor.teagasc.ie/handle/11019/1478.

  • Pierce, F., & Elliott, T. (2008). Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronincs in Agriculture, 61, 32–43.

    Article  Google Scholar 

  • Rayburn, E. B., Shockey, W. L., Seymour, D. A., Smith, B. D., & Basden, T. J. (2017). Calibration of pasture forage mass to plate meter compressed height is a second-order response with a zero intercept. Crop, Forage, and Turfgrass Managment, 3. https://doi.org/10.2134/cftm2017.01.0003.

  • Rennie, G. M., King, W. M., Puha, M. R., Dalley, D. E., Dynes, R. A., & Upsdell, M. P. (2009). Calibration of the C-DAX rapid pasturemeter and the rising plate meter for kikuyu-based Northland dairy pastures. Journal of New Zealand Grasslands, 71, 49–55.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002.

    Article  Google Scholar 

  • Romera, A. J., Beukes, P., Clark, C., Clark, D., Levy, H., & Tait, A. (2010). Use of a pasture growth model to estimate herbage mass at a paddock scale and assist management on dairy farms. Computers and Electronincs in Agriculture, 74, 66–72. https://doi.org/10.1016/j.compag.2010.06.006.

    Article  Google Scholar 

  • Ruelle, E., Hennessy, D., & Delaby, L. (2018). Development of the Moorepark St Gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems. European Journal of Agronomy, 99, 80–91. https://doi.org/10.1016/j.eja.2018.06.010.

    Article  Google Scholar 

  • Sanderson, M. A., Rotz, C. A., Fultz, S. W., & Rayburn, E. B. (2001). Estimating forage mass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agronomy Journal, 93, 1281–1286.

    Article  Google Scholar 

  • Saruta, K., Hirai, Y., Tanaka, K., Inoue, E., Okayasu, T., & Mitsuoka, M. (2013). Predictive models for yield and protein content of brown rice using support vector machine. Computers and Electronics in Agriculture, 99, 93–100. https://doi.org/10.1016/j.compag.2013.09.003.

    Article  Google Scholar 

  • Serrano, J. M., Peça, J. O., Marques da Silva, J., & Shahidian, S. (2011). Calibration of a capacitance probe for measurement and mapping of dry matter yield in Mediterranean pastures. Precision Agriculture, 12, 860–875. https://doi.org/10.1007/s11119-011-9227-4.

    Article  Google Scholar 

  • Shalloo, L., Dillon, P., & Murphy, J. J. (2005). A comparison of three systems of milk production with different land use strategies. In Proceedings of Satellite Workshop of the XXth International Grassland Congress (p. 236). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Shine, P., Murphy, M. D., Upton, J., & Scully, T. (2018a). Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms. Computers and Electronics in Agriculture, 150, 74–87. https://doi.org/10.1016/j.compag.2018.03.023.

    Article  Google Scholar 

  • Shine, P., Scully, T., Upton, J., & Murphy, M. D. (2018b). Multiple linear regression modelling of on-farm direct water and electricity consumption on pasture based dairy farms. Computers and Electronics in Agriculture, 148, 337–346. https://doi.org/10.1016/j.compag.2018.02.020.

    Article  Google Scholar 

  • Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., & Levy, S. (2005). A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21, 631–643. https://doi.org/10.1093/bioinformatics/bti033.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, N. A. (1983). Factors influencing the accuracy of herbage mass determinations with a capacitance meter. New Zealand Journal of Experimental Agriculture, 11, 171–176. https://doi.org/10.1080/03015521.1983.10427749.

    Article  Google Scholar 

  • Thomson, N. A., Upsdell, M., Hooper, R., Henderson, H., Blackwell, M. B., Mccallum, D. A. et al. (2001). Development and evaluation of a standardised means for estimating herbage mass of dairy pastures using the rising plate meter. In Proceedings of New Zealand Grassland Association (pp. 149–157). Hamilton, New Zealand.

  • Togeiro de Alckmin, G., Kooistra, L., Rawnsley, R., & Lucieer, A. (2020). Comparing methods to estimate perennial ryegrass biomass: Canopy height and spectral vegetation indices. Precision Agriculture. https://doi.org/10.1007/s11119-020-09737-z.

    Article  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, MA, USA: Addison-Wesley.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff and students of the Moorepark Grassland Laboratory for their hard work and dedication during the course of this study. This research was supported by the Irish Department of Agriculture, Food and the Marine and the European Commission’s ERA-NET, ICT—AGRI scheme (grant no. 15ICTAGRI_1) as part of the Horizon 2020 project.

Funding

This research was supported by the Irish Department of Agriculture, Food and the Marine and the European Commission’s ERA-NET, ICT—AGRI scheme as part of the Horizon 2020 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Murphy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Tables 5

Table 5 Monthly herbage mass prediction coefficients for model H, the top performing model with meteorological variables

,

Table 6 Monthly herbage mass prediction coefficients for model D, the top performing model without meteorological variables

6 and

Table 7 Monthly herbage mass prediction coefficients for model B

7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, D.J., Shine, P., Brien, B.O. et al. Utilising grassland management and climate data for more accurate prediction of herbage mass using the rising plate meter. Precision Agric 22, 1189–1216 (2021). https://doi.org/10.1007/s11119-020-09778-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09778-4

Keywords

Navigation