Skip to main content
Log in

Formulation, optimization, and in vitro characterization of omega-3-rich binary lipid carriers for curcumin delivery: in vitro evaluation of sustained release and its potential antioxidant behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Curcumin is a natural polyphenol obtained from Curcuma longa which has gained much attention in medical and scientific fields and is known for its wide range of therapeutic applications. But the natural herb mixtures with high subatomic sizes have low retention limits which does not permit the restorative medication to cross the lipid membranes, subsequently bringing about low bioavailability with confined proficiency. Nanobiotechnology has overcome the drawbacks of curcumin delivery to its targeted site through the use of antioxidant-rich, biodegradable SLNs as drug delivery vehicle with specificity and expanded bioavailability that will encourage the dynamic release of therapeutic ingredients into the body. Herein, optimized curcumin-loaded SLNs (CuSLNs) were developed. The morphological analysis of SEM has shown the average particle size was found to be in the range of 71–112 nm. The physicochemical characteristics of optimized CuSLNs were particle size of 106 nm, zeta potential of − 54 mV, polydispersity index of 0.429 which have confirmed the nanoparticle stability. The FTIR, DSC, and XRD results have suggested the lipids are compatible and confirmed the complete solubilization of curcumin in the lipid phase. Encapsulation efficiency and drug loading capacity of optimized formulation were 88.22 and 13.13, respectively. In vitro release studies have shown the controlled drug release rate of 88% compared with free curcumin and 81% of in vitro antioxidant activity which is compared with the ascorbic acid. The studies confirmed that the formulation of CuSLNs is a promising drug delivery system with controlled drug release, improved bioavailability with good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Augustine A, Pius A, Gopi S, Gopi S (2017) Biological activities of Curcuminoids, other bio molecules from turmeric and their derivatives-a review. J Tradit Complement Med 7:205–233

    Google Scholar 

  2. Anand P, Thomas SG, Ajaikumar B, Kunnumakkara AB, Sundaram C, Harikumar KB (2008) Biological activities of Curcumin and its analogues (Congeners) made by man and mother nature. BiochemPharmacol 7:1590–1611

    Google Scholar 

  3. Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28(219):42

    Google Scholar 

  4. Fiala M, Liu PT, EspinosaJeffrey A, Rosenthal MJ, Bernard G, Ringman JM (2007) Innate immunity and transcription of MGAT-III and Tolllike receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci USA 104:12849–12854

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Anand P et al (2007) Bioavailability of Curcumin: problems and promises. Mol Pharm 4:807–818

    CAS  PubMed  Google Scholar 

  6. Jager R et al (2014) Comparative absorption of curcumin formulations. Nutr J 13:11

    PubMed  PubMed Central  Google Scholar 

  7. Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 65:1316–1330

    CAS  PubMed  Google Scholar 

  8. Biswas CS, Biswas A, Galluzzi M, Shekh MI, Wang Q, Ray B, Maiti P, Stadler FJ (2020) Synthesis and characterization of novel amphiphilic biocompatible block-copolymers of poly (N-isopropylacrylamide)-b-poly (l-phenylalanine methyl ester) by RAFT polymerization. Polymer 203:122760

    CAS  Google Scholar 

  9. Shekh MI, Amirian J, Stadler FJ, Du B, Zhu Y (2020) Oxidized chitosan modified electrospun scaffolds for controllable release of acyclovir. Int J Biol Macromol 151:787–796

    CAS  PubMed  Google Scholar 

  10. Dhanavel S, Revathy TA, Sivaranjani T, Sivakumar K, Palani P, Narayanan V, Stephen A (2020) 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym Bull 77(1):213–233

    CAS  Google Scholar 

  11. Dhanavel S, Praveena P, Narayanan V, Stephen A (2019) Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and Curcumin towards HT-29 colon cancer cells. Polym Bull 5:1–6

    Google Scholar 

  12. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharm 6:286

    Google Scholar 

  13. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    PubMed  PubMed Central  Google Scholar 

  14. Zylberberg C, Matosevic S (2016) Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23:3319–3329

    CAS  PubMed  Google Scholar 

  15. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    CAS  PubMed  Google Scholar 

  16. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    CAS  PubMed  Google Scholar 

  17. Miyata K, Christie RJ, Kataoka K (2011) Polymeric micelles for nano-scale drug delivery. React Funct Polym 71:227–234

    CAS  Google Scholar 

  18. Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    PubMed  PubMed Central  Google Scholar 

  19. Kesharwani P, Xie L, Banerjee S, Mao G, Padhye S, Sarkar FH, Iyer AK (2015) Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Coll Surf B 136:413–423

    CAS  Google Scholar 

  20. Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1:4199–4211

    CAS  PubMed  Google Scholar 

  21. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139

    PubMed  PubMed Central  Google Scholar 

  22. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Progr Polym Sci 39:268–307

    CAS  Google Scholar 

  23. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea G, Sosa- Ferreyra C, Mercado-Curiel R, Manríquez J, Bustos E (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014:39

    Google Scholar 

  24. McNamara K, Tofail SA (2015) Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 17:27981–27995

    CAS  PubMed  Google Scholar 

  25. Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7:243

    PubMed Central  Google Scholar 

  26. Zebib B, Mouloungui Z, Noirot V (2010) Stabilization of Curcumin by complexation with divalent cations in glycerol/water system. Bioinorg Chem Appl. https://doi.org/10.1155/2010/292760

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao ZX, Jiang T, Wang L, Yang H, Zhang S, Zhou P (2010) Interaction of Curcumin with Zn (II) and Cu (II) ions based on experiment and theoretical calculation. J Mol Struct 984:316–325

    CAS  Google Scholar 

  28. Guo M, Muhammad F, Wang A, Qi W, Wang N, Guo Y, Weic Y, Zhu G (2013) Magnesium hydroxide nanoplates: a pH-responsive platform for hydrophobic anticancer drug delivery. J Mater Chem B 1:5273–5278

    CAS  PubMed  Google Scholar 

  29. Adib M, Ghanbarzadeh S, Kouhsoltani M, Khosroshahi AY, Hamishehkar H (2016) The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: a histological study. Adv Pharm Bull 6:31–36

    CAS  Google Scholar 

  30. Manjunath K, Reddy JS, Venkateswarlu V (2005) Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 27:127–144

    CAS  PubMed  Google Scholar 

  31. Ekambaram P, Sathali A, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2:80–102

    CAS  Google Scholar 

  32. Ramteke KH, Joshi SA, Dhole SN (2012) Solid lipid nanoparticle: a review. IOSR J Pharm 2:34–44

    Google Scholar 

  33. Müller RH, Shegokar R, Keck CM (2011) 20 years of lipid nanoparticles (SLN and NLC) present state of development and industrial applications. Curr Drug Discov Technol 8:207–227

    PubMed  Google Scholar 

  34. Mühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 45:149–155

    PubMed  Google Scholar 

  35. Chen J, Stavro PM, Thompson LU (2002) Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr Cancer 43:187–192

    CAS  PubMed  Google Scholar 

  36. Wiesenborn D, Kangas N, Tostenson K, Hall KCIII, Chang K (2005) Sensory and oxidativequality of screw-pressed flaxseed oil. J Am Oil Chem Soc 82:887–892

    CAS  Google Scholar 

  37. Wang L, Chen J, Thompson LU (2005) The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenografts is attributed to both its lignan and oil components. Int J Cancer 116:793–798

    CAS  PubMed  Google Scholar 

  38. Dwivedi C, Natarajan K, Matthees DP (2005) Chemopreventive effects of dietary flaxseedoil on colon tumour development. Nutr Cancer 51:52–58

    CAS  PubMed  Google Scholar 

  39. Prasad K (1997) Dietary flax seed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis 132:69–76

    CAS  PubMed  Google Scholar 

  40. Xu J, Yang W, Deng Q, Huang Q, Yang J, Huang F (2012) Flaxseed oil and a-lipoic acid combination reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids Health Dis 11:148

    PubMed  PubMed Central  Google Scholar 

  41. Üner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2:289–300

    Google Scholar 

  42. Triplett DM, Rathman FJ (2007) Optimization of β- carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J Nanoparticle Res 11:601–614

    Google Scholar 

  43. Yassin AE, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA (2010) Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci 7:398–408

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rahman SMH, Telny TC, Ravi TK, Kuppusamy S (2009) Role of surfactant and pH in dissolution of Curcumin. Ind J Pharm Sci 71:139–142

    CAS  Google Scholar 

  45. Cheel J, Theoduloz C, Rodriguez J, Schmeda- Hirschmann G (2005) Free radical scavengersand antioxidants from lemongrass (Cymbopogoncitratus (DC) Stapf). J Agric Food Chem 53:2511–2517

    CAS  PubMed  Google Scholar 

  46. Oyaizu M (1986) Studies on product of browning reaction prepared from glucose amine. Jpn J Nutr 44:307–315

    CAS  Google Scholar 

  47. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST (2002) Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 50:2454–2458

    CAS  PubMed  Google Scholar 

  48. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of“antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    CAS  PubMed  Google Scholar 

  49. Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Saavedra G, Murcia MA (2003) Investigation of Bolivian plant extracts for their radical scavenging activity and antioxidant activity. Life Sci 73:1667–1681

    CAS  PubMed  Google Scholar 

  50. Maksimović Z, Malenčić D, Kovačević N (2005) Polyphenol contents and antioxidant activity of maydis stigma extracts. Bio-resour Technol 96:873–877

    Google Scholar 

  51. Kumar S, Randhawa JK (2014) Paliperidone-loaded spherical solid lipid nanoparticles. RSC Adv 4:30186–30192

    CAS  Google Scholar 

  52. Lacatusu I (2013) Lipid nanoparticles based on omega-3 fatty acids as effectivecarriers for lutein delivery. Preparation and in vitro characterization studies. J Funct Foods 5:1260–1269

    CAS  Google Scholar 

  53. Michele T, Francesca D, Otto C (2003) Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm 257:153–160

    Google Scholar 

  54. Kumar PP, Gayatri P, Sunil R, Jaganmohan S, Rao YM (2013) Atorvastatin loaded solid lipid nanoparticles: formulation, optimization, and in vitro characterization. IOSR J Pharm 2:23–32

    Google Scholar 

  55. Chavda H, Patel J, Chavada G, Dave S, Patel A, Patel C (2013) Self nanoemulsifying powder of isotretinoin: preparation and characterization. J Powder Technol 2013:108569

    Google Scholar 

  56. Rehman M, Madni A, Ihsan A, Khan WS, Khan MI, Mahmood MA, Ashfaq M, Bajwa SZ, Shakir I (2015) Solid and liquid lipid-based binary solid lipid nanoparticles of diacerein: in vitro evaluation of sustained release, simultaneous loading of gold nanoparticles, and potential thermoresponsive behavior. Int J Nanomed 10:2805

    CAS  Google Scholar 

  57. Olbrich C, Kayser O, Müller RH (2002) Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)–effect of surfactants, storage time and crystallinity. Int J Pharm 237:119–128

    CAS  PubMed  Google Scholar 

  58. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated fromnano-emulsion templates-a review. J Control Release 128:185–199

    CAS  PubMed  Google Scholar 

  59. Zhang J, Fan JY, Smith YE (2009) Experimental design for the optimization of lipidnanoparticles. J Pharm Sci 98:1813–1819

    CAS  PubMed  Google Scholar 

  60. Cavalli R, Caputo O, Gasco MR (2000) Preparation and characterization of solid lipidnanospheres containing paclitaxel. Eur J Pharm Sci 10:305–309

    CAS  PubMed  Google Scholar 

  61. Heurtault B, Saulnier P, Pech H (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24:4283–4300

    CAS  PubMed  Google Scholar 

  62. Rahman MH, Ramanathan M, Sankar V (2014) Preparation, characterization and in vitro cytotoxicity assay of Curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line. Pak J Pharm Sci 27:1281–1285

    CAS  PubMed  Google Scholar 

  63. Clogston JD, Patri AK (2011) Zeta potential measurementMethods. Mol Biol 697:63–70

    CAS  Google Scholar 

  64. Chen J (2013) Fabrication and evaluation of Curcumin-loaded nanoparticles based on solid lipid as a new type of colloidal drug delivery system. Indian J Pharm Sci 75:178–184

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Niveta S, Dipti KT, Seema C (2017) Formulation and evaluation of PEGylated GMS based solid lipid nanoparticles. Int J Biotech Biomed Sci 3:52–57

    Google Scholar 

  66. Kolev TM, Velcheva EA, Stambolyska BA, Speteller M (2005) DFT and experimental studies of the structure and vibrational spectra of Curcumin. Int J Quant Chem 102:1069–1079

    CAS  Google Scholar 

  67. Yallapu MM, Jaggi M, Chauhan SC (2010) β-Cyclodextrin-Curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Coll Surf B 79:113–125

    CAS  Google Scholar 

  68. Mei D, Zhang B, Liu R, Zhang H, Liu J (2011) Preparation of stearic acid/halloysite nanotube composite as form-stable PCM for thermal energy storage. Int J Energy Res 35:828–834

    CAS  Google Scholar 

  69. Fu X, Liu Z, Wu B, Wang J, Lei J (2016) Preparation and thermal properties of stearic acid/diatomite 9 composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim 123:1173–1181

    CAS  Google Scholar 

  70. Wang Y, Xia TD, Zheng H, Feng HX (2011) Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage. Energy Build 43:2365–2370

    Google Scholar 

  71. Zhang ZS, Wang LJ, Li D, Li SJ, Zkan ON (2011) Characteristics of flaxseed oil from two different flax plants. Int J Food Prop 14:1286–1296

    CAS  Google Scholar 

  72. Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR (2010) Transferrin mediated solid lipid nanoparticles containing Curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J pharm 398:190–203

    CAS  PubMed  Google Scholar 

  73. Izumikawa S, Yoshioka S, Aso Y, Tkeda Y (1991) Preparation of poly(1-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate. J control release 15:133–140

    CAS  Google Scholar 

  74. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticle (SLN) for controlled drugdelivery–a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    CAS  PubMed  Google Scholar 

  75. Jenning V, Gysler A, Schäfer-Korting M, Gohla SH (2000) Vitamin A loaded solid lipidnanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 49:211–218

    CAS  PubMed  Google Scholar 

  76. Kuo YC, Chen HH (2009) Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int J Pharm 365:206–213

    CAS  PubMed  Google Scholar 

  77. Kuo YC, Chung JF (2011) Physicochemical properties of nevirapineloaded solid lipidnanoparticles and nanostructured lipid carriers. Coll Surf B Biointerfaces 83:299–306

    CAS  Google Scholar 

  78. Schwarz C, Mehnert W, Lucks JS (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30:83–96

    CAS  Google Scholar 

  79. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of Curcumin. Adv Exp Med Biol 595:105–125

    PubMed  Google Scholar 

  80. Wright JS (2002) Predicting the antioxidant activity of Curcumin and curcuminoids. J Mol Struct 591:207–217

    CAS  Google Scholar 

  81. Priyadarsini KI (1997) Free radical reactions of Curcumin in model membranes. Free Radic Biol Med 23:838–884

    CAS  PubMed  Google Scholar 

  82. Sun YM (2002) Theoretical elucidation on the antioxidant mechanism of Curcumin: a DFT study. Org Lett 4:2909–2911

    CAS  PubMed  Google Scholar 

  83. Ak T, Gulcin I (2008) Antioxidant and radical scavenging properties of Curcumin. Chem Biol Interact 174:27–37

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to DST-CURIE Center, Sri Padmavati Mahila Visvavidyalayam, Tirupati, for extending the instrumentation facility to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kummara Madhusudana Rao or John Sushma Nannepaga.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganna, S., Gutturu, R., Borelli, D.P. et al. Formulation, optimization, and in vitro characterization of omega-3-rich binary lipid carriers for curcumin delivery: in vitro evaluation of sustained release and its potential antioxidant behavior. Polym. Bull. 79, 307–330 (2022). https://doi.org/10.1007/s00289-020-03494-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03494-9

Keywords

Navigation