Skip to main content
Log in

Effect of Heating Rate on Microstructure and Mechanical Properties in Al 7055

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of the heating rate during solid solution heat treatment on the mechanical properties and microstructure of the 7055 aluminum alloy were investigated. The dissolution and formation kinetics of the precipitates in the sample before the solid solution treatment vary depending on the heating rate. This is because the dissolution and formation of precipitate particles are diffusion-controlled. Therefore, dilatometric tests were carried out to control the heating rates during the solid solution treatment. Then, the mechanical properties were evaluated using hardness and compressive tests, while the microstructural features were observed using X-ray diffraction, optical microscopy, and scanning transmission electron microscopy. The characteristics of the precipitate for each heating rate were calculated using thermodynamic simulation, and a model to predict the mechanical properties was proposed based on the results.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.C. Williams, E.A. Starke Jr., Acta Mater. 51, 5775 (2003)

    Article  CAS  Google Scholar 

  2. M. Nakai, T. Eto, Mater. Sci. Eng. A 285, 62 (2000)

    Article  Google Scholar 

  3. J. Lee, H.J. Bong, D. Kim, Y.S. Lee, Y. Choi, M.G. Lee, Met. Mater. Int. 26, 682 (2020)

    Article  CAS  Google Scholar 

  4. J.G. Kaufman, Properties of Aluminum Alloys-Tensile, Creep, and Fatigue Data at High and Low Temperature (ASM International, Materials Park, OH, ASM, 1999), p. 207

    Google Scholar 

  5. J.R. Davis, ASM Speciality Handbook, (ASM International, Materials Park, OH, 1993), pp. 65–67.

    Google Scholar 

  6. J. Buha, R.N. Lumley, A.G. Crosky, Mater. Sci. Eng. A 492, 1 (2008)

    Article  Google Scholar 

  7. S.H. Kayani, J.G. Jung, M.S. Kim, K. Euh, Met. Mater. Int. 26, 1079 (2020)

    Article  CAS  Google Scholar 

  8. M. Dixit, R.S. Mishra, K.K. Sankaran, Mater. Sci. Eng. A 478, 163 (2008)

    Article  Google Scholar 

  9. H. Puga, V.H. Carneiro, Light–alloy melt ultrasonication: shorter T6 with higher precipitation strengthening. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00798-3

    Article  Google Scholar 

  10. K.S. Ghosh, N. Gao, Trans. Nonferrous Metal. Soc. 21, 1199 (2011)

    Article  CAS  Google Scholar 

  11. A. Karaaslan, I. Kaya, H. Atapek, Met. Sci. Heat treat. 49, 443 (2007)

    Article  CAS  Google Scholar 

  12. Y. Liu, D. Jiang, B. Li, T. Ying, J. Hu, Mater. Des. 60, 116 (2014)

    Article  CAS  Google Scholar 

  13. T. Furuhara, K. Kobayashi, T. Maki, ISIJ Int. 44, 1937 (2004)

    Article  CAS  Google Scholar 

  14. O.N. Senkov, M.R. Shagiev, S.V. Senkova, D.B. Miracle, Acta Mater. 56, 3723 (2008)

    Article  CAS  Google Scholar 

  15. Z. Zhang, J. Yu, D. He, Mater. Sci. Eng. A 743, 500 (2019)

    Article  CAS  Google Scholar 

  16. X. Xu, Y. Zhao, X. Wang, Y. Zhang, Y. Ning, Mater. Sci. Eng. A 654, 278 (2016)

    Article  CAS  Google Scholar 

  17. S.D. Liu, X.M. Zhang, M.A. Chen, J.H. You, Mater. Charact. 59, 53 (2008)

    Article  CAS  Google Scholar 

  18. G. Sha, A. Cerezo, Acta Mater. 52, 4503 (2004)

    Article  CAS  Google Scholar 

  19. W. Yang, S. Ji, M. Wang, Z. Li, J. Alloy. Compd. 610, 623 (2014)

    Article  CAS  Google Scholar 

  20. V. Hanen, O.B. Karlsen, Y. Langsrud, J. Gjønnes, Mater. Sci. Tech. 20, 185 (2004)

    Article  Google Scholar 

  21. Y.L. Chang, F.Y. Hung, T.S. Lui, Mater. Sci. Eng. A 702, 438 (2017)

    Article  CAS  Google Scholar 

  22. C. Mondal, A.K. Mukhopadhyay, Mater. Sci. Eng. A 391, 367 (2005)

    Article  Google Scholar 

  23. B. Milkereit, N. Wanderka, C. Schick, O. Kessler, Mater. Sci. Eng. A 550, 87 (2012)

    Article  CAS  Google Scholar 

  24. Y.C. Lin, J.L. Zhang, M.S. Chen, J. Alloy. Compd. 684, 177 (2016)

    Article  CAS  Google Scholar 

  25. M. Mihara, C.D. Marioara, S.J. Andersen, R. Holmenstad, E. Kobayashi, T. Sato, Mater. Sci. Eng. A 658, 91 (2016)

    Article  CAS  Google Scholar 

  26. O.R. Myhr, Ø. Grong, S.J. Andersen, Acta Mater. 49, 65 (2001)

    Article  CAS  Google Scholar 

  27. G.E. Totten, D.S. MacKenzie, Handbook of Aluminum-Physical Metallurgy and Processes (Marcel Dekker Inc., New York, 2003), p. 89

    Google Scholar 

  28. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill Book, New York, 1986), pp. 77–80

    Google Scholar 

  29. P.M. Kelly, Scr. Metall. 6, 647 (1972)

    Article  CAS  Google Scholar 

  30. S.D. Harkness, J.J. Hren, Metall. Trans. 1, 43 (1970)

    CAS  Google Scholar 

  31. E. Hornbogen, E.A. Starke, Acta Metall. Mater. 41, 1 (1993)

    Article  CAS  Google Scholar 

  32. N.M. Han, X.M. Zhang, S.D. Liu, D.G. He, R. Zhang, J. Alloy. Compd. 509, 4138 (2011)

    Article  CAS  Google Scholar 

  33. M. Esmailian, M. Shakouri, A. Mottahedi, S.G. Shabestari, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 9, 1303 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists. This paper was supported by research funds of Jeonbuk National University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Jae Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Jeon, J., Seo, N. et al. Effect of Heating Rate on Microstructure and Mechanical Properties in Al 7055. Met. Mater. Int. 27, 449–455 (2021). https://doi.org/10.1007/s12540-020-00910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00910-7

Keywords

Navigation