Skip to main content
Log in

Creep Behavior of a High-\(\gamma^{\prime}\) Ni-Based Superalloy Fabricated via Electron Beam Melting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additive manufacturing enables the fabrication of complex engineering components previously inaccessible through traditional processes. Nickel-base superalloys with large \(\gamma^{\prime}\) volume fraction are typically considered non-weldable and therefore exhibit a propensity for cracking during the fusion process. These crack-prone materials, however, are of great importance in gas turbine engines due to their excellent high temperature creep resistance. In this study we investigate the creep behavior of IN738LC produced by the electron beam melting process. We find that with appropriate post-build heat treatment the creep response of material oriented in the build direction exhibits deformation and rupture behavior comparable to that of conventionally cast IN738 & IN738LC. In the transverse direction properties fall below the expected cast behavior, however, we argue this is likely due to differences in grain scale and crystallographic texture. It may be possible to coarsen the grain morphology with appropriate process-parameter optimization in order to reduce the severity of intergranular fracture in the transverse direction. These results illustrate that high temperature properties exhibited by additively manufactured IN738LC are suitable for the hot section of gas turbine engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.

  2. C.T. Sims: Superalloys, TMS, Warrendale, PA, 1984, pp. 399–419

    Google Scholar 

  3. F. VerSnyder: in Proceedings of a Conference held in Liege, 1982.

  4. R. Brunetaud, D. Coutsouradis, T. Gibbons, Y. Lindblom, D. Meadowcroft, and R. Stickler: in Proceedings of a Conference held in Liege, 1982.

  5. W. Betteridge, S. Shaw, Mater. Sci. Technol., 1987, vol. 39, 682–94

    Article  Google Scholar 

  6. F.I. Versnyder, M. Shank, Mater. Sci. Eng., 1970, vol. 64, 213–47

    Article  Google Scholar 

  7. B. Piearcey, F. VerSnyder, J. Aircraft, 1966, vol. 35, 390–97

    Article  Google Scholar 

  8. S.F.L. Ver: Gas turbine element, US Patent 3,260,505, 1966.

  9. L. Mataveli Suave, J. Cormier, P. Villechaise, D. Bertheau, G. Benoit, G. Cailletaud, and L. Marcin: Mater. High Temp., vol. 334–345, 361–71, 2016.

  10. J. Lacaze and A. Hazotte: Text. Microstruct., 1970, vol. 13, art. no. 601079.

    Google Scholar 

  11. T. Pollock, A. Argon, Acta Metall. Mater., 1992, vol. 401, 1–30

    Article  Google Scholar 

  12. M. Nathal, L. Ebert, Metall. Trans. A, 1985, vol. 1610, 1863–70

    Article  Google Scholar 

  13. T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Acta Mater., 2004, vol. 5212, 3737–44

    Article  Google Scholar 

  14. A. Giamei, D. Anton, Metall. Trans. A, 1985, vol. 1611, 1997–2005

    Article  Google Scholar 

  15. P. Caron, T. Khan, Mater. Sci. Eng., 1983, vol. 612, 173–84

    Article  Google Scholar 

  16. R.R. Dehoff, M. Kirka, W. Sames, H. Bilheux, A. Tremsin, L. Lowe, S. Babu, Mater. Sci. Technol., 2015, vol. 318, 931–38

    Article  Google Scholar 

  17. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, S.S. Babu, Acta Mater., 2016, vol. 112, 303–314

    Article  CAS  Google Scholar 

  18. N. Raghavan, S. Simunovic, R. Dehoff, A. Plotkowski, J. Turner, M. Kirka, S. Babu, Acta Mater., 2017, vol. 140, 375–87

    Article  CAS  Google Scholar 

  19. G. Dinda, A. Dasgupta, J. Mazumder, Scr. Mater., 2012, vol. 675, 503–06

    Article  Google Scholar 

  20. H. Wei, J. Mazumder, T. DebRoy, Sci. Rep., 2015, vol. 5, 16446

    Article  CAS  Google Scholar 

  21. L.L. Parimi, G. Ravi, D. Clark, M.M. Attallah, Mater. Charact., 2014, vol. 89, 102–111

    Article  CAS  Google Scholar 

  22. C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, G. Eggeler, Metall. Mater. Trans. A, 2018, vol. 499A, 3781–92

    Article  Google Scholar 

  23. M. Ramsperger, R.F. Singer, and C. Körner: Metall. Mater. Trans. A, 2016, vol. 473A, 1469–80.

  24. E. Chauvet, C. Tassin, J.J. Blandin, R. Dendievel, G. Martin, Scr. Mater., 2018, vol. 152, 15–19

    Article  CAS  Google Scholar 

  25. F. Geiger, K. Kunze, T. Etter, Mater. Sci. Eng. A, 2016, vol. 661, 240–46

    Article  CAS  Google Scholar 

  26. V. Popovich, E. Borisov, V.S. Sufiyarov, A. Popovich, Met. Sci. Heat Treat., 2019, vol. 6011-6012, 701–09

    Article  Google Scholar 

  27. L. Thijs, M.L.M. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, J. Van Humbeeck, Acta Mater., 2013, vol. 6112, 4657–68

    Article  Google Scholar 

  28. K. Kunze, T. Etter, J. Grässlin, V. Shklover, Mater. Sci. Eng. A, 2015, vol. 620, 213–22

    Article  Google Scholar 

  29. T. Etter, K. Kunze, F. Geiger, and H. Meidani: in IOP Conference Series: Materials Science and Engineering, vol. 82, p. 012097, IOP Publishing, Bristol, 2015.

  30. M.L. Montero-Sistiaga, S. Pourbabak, J. Van Humbeeck, D. Schryvers, K. Vanmeensel, Mater. Des., 2019, vol. 165, 107598

    Article  CAS  Google Scholar 

  31. W.J. Sames, F. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev., 2016, vol. 615, 315–60

    Article  Google Scholar 

  32. R.F. Decker, Metall. Trans., 1973, vol. 411, 2495–518

    Article  Google Scholar 

  33. V. Mohles, D. Rönnpagel, E. Nembach, Comput. Mater. Sci., 1999, vol. 161-4, 144–50

    Article  Google Scholar 

  34. L.N. Carter, M.M. Attallah, R.C. Reed, Superalloys, 2012, vol. 2012, 577–86

    Article  Google Scholar 

  35. M. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Sci. Technol. Weld. Join., 2004, vol. 91, 13–21

    Article  Google Scholar 

  36. M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, ASM International, Materials Park, 2002.

  37. J. Yang, F. Li, Z. Wang, X. Zeng, J. Mater. Process. Technol., 2015, vol. 225, 229–39

    Article  CAS  Google Scholar 

  38. R. Engeli, T. Etter, S. Hoevel, K. Wegener, J. Mater. Process. Technol., 2016, vol. 229, 484–91

    Article  CAS  Google Scholar 

  39. S. Asavavisithchai, W. Homkrajai, P. Wangyao, High Temp. Mater. Processes, 2010, vol. 291-2, 61–68

    Article  Google Scholar 

  40. O. Ojo, N. Richards, M. Chaturvedi, Scr. Mater., 2004, vol. 505, 641–46

    Article  Google Scholar 

  41. R. Reed, N. Matan, D. Cox, M. Rist, C. Rae, Acta Mater., 1999, vol. 4712, 3367–81

    Article  Google Scholar 

  42. R. Stevens, P. Flewitt, Mater. Sci. Eng., 1979, vol. 373, 237–47

    Article  Google Scholar 

  43. R. Stevens, P. Flewitt, Acta Metall., 1981, vol. 295, 867–82

    Article  Google Scholar 

  44. D. Woodford, J. Frawley, Metall. Trans., 1974, vol. 59, 2005–2013

    Article  Google Scholar 

  45. R. Mishra, S. Singh, A. Sriramamurthy, M. Pandey, Mater. Sci. Technol., 1995, vol. 114, 341–46

    Article  Google Scholar 

  46. L. Rickenbacher, T. Etter, S. Hövel, K. Wegener, Rapid Prototyping J., 2013, vol. 194, 282–90

    Article  Google Scholar 

  47. J. Xu, H. Gruber, D. Deng, R.L. Peng, J.J. Moverare, Acta Mater., 2019, vol. 179, 142–57

    Article  CAS  Google Scholar 

  48. Y.T. Tang, A.J. Wilkinson, R.C. Reed, Metall. Mater. Trans. A, 2018, vol. 499, 4324–42

    Article  Google Scholar 

  49. J. Risse, C. Broeckmann, Additive manufacturing of nickel-base superalloy in738lc by laser powder bed fusion. Tech. Rep., Lehrstuhl für Lasertechnik, 2019

    Google Scholar 

  50. M. Pröbstle, S. Neumeier, J. Hopfenmüller, L. Freund, T. Niendorf, D. Schwarze, M. Göken, Mater. Sci. Eng. A, 2016, vol. 674, 299–307

    Article  Google Scholar 

  51. L. Thébaud, P. Villechaise, C. Crozet, A. Devaux, D. Béchet, J.M. Franchet, A.L. Rouffié, M. Mills, J. Cormier, Mater. Sci. Eng. A, 2018, vol. 716, 274–83

    Article  Google Scholar 

  52. B. Shassere, D. Greeley, A. Okello, M. Kirka, P. Nandwana, R. Dehoff, Metall. Mater. Trans. A, 2018, vol. 4910A, 5107–117

    Article  Google Scholar 

  53. Y.L. Kuo, S. Horikawa, K. Kakehi, Scr. Mater., 2017, vol. 129, 74–78

    Article  CAS  Google Scholar 

  54. Y.L. Kuo, T. Nagahari, K. Kakehi, Materials, 2018, vol. 116, 996

    Article  Google Scholar 

  55. W. Sames: Additive manufacturing of inconel 718 using electron beam melting: processing, post-processing, & mechanical properties, Ph.D. thesis, Texas A & M, 2015.

  56. O. Messé, R. Muñoz-Moreno, T. Illston, S. Baker, H. Stone, Addit. Manuf., 2018, vol. 22, 394–404

    Google Scholar 

  57. G. Jiangting, D. Ranucci, E. Picco, Superalloys 1984, 1984, pp. 689–98

    Google Scholar 

  58. R. Castillo, A. Koul, and J. Immarigeom: in: Superalloys 1988, The Metallurgical Society, 1988.

  59. National Institute for Materials Science: in: NIMS Creep Data Sheet, NIMS, Tsukuba, 2007.

  60. The International Nickel Company, Inc.: Alloy IN-738 Technical Data, The International Nickel Company Inc, New York, 1981.

  61. A. Koul, J. Immarigeon, R. Castillo, P. Lowden, and J. Liburdi, in Proceedings of Superalloys 1988 (Sixth International Symposium), pp. 755–764, 1988.

  62. A. Ibanez, V. Srinivasan, A. Saxena, Fatigue Fract. Eng. Mater. Struct., 2006, vol. 2912, 1010–20

    Article  Google Scholar 

  63. G. Jianting, D. Ranucci, E. Picco, Mater. Sci. Eng., 1983, vol. 581, 127–33

    Article  Google Scholar 

  64. F. Bachmann, R. Hielscher, and H. Schaeben, in Solid State Phenomenon, vol. 160, pp. 63–68, Trans Tech Publ, 2010.

  65. M.I. Latypov, M. Kühbach, I.J. Beyerlein, J.C. Stinville, L.S. Toth, T.M. Pollock, S.R. Kalidindi, Mater. Charact., 2018, vol. 145, 671–85

    Article  CAS  Google Scholar 

  66. D.M. Turner, S.R. Niezgoda, S.R. Kalidindi, Model. Simul. Mater. Sci. Eng., 2016, vol. 247, 075002

    Article  Google Scholar 

  67. P. Fernandez-Zelaia, S.N. Melkote, J. Mater. Process. Technol., 2019, vol. 273, 116251

    Article  Google Scholar 

  68. OpenCV: Open Source Computer Vision Library, 2015.

  69. K.A. Unocic, D. Shin, X. Sang, E. Cakmak, P.F. Tortorelli, Scr. Mater., 2019, vol. 162, 416–20

    Article  CAS  Google Scholar 

  70. L. Liu, F. Sommer, and H. Fu: Scr. Metall. Mater. (U.S.), vol. 30, 587–591, 1994.

    Article  CAS  Google Scholar 

  71. F. Furillo, J. Davidson, J. Tien, L. Jackman, Mater. Sci. Eng., 1979, vol. 392, 267–73

    Article  Google Scholar 

  72. R. Oruganti, M. Karadge, S. Nalawade, S. Kelekanjeri, F. Mastromatteo, Superalloys 2012, 2012, pp. 473–79

    Article  Google Scholar 

  73. F.C. Monkman and N. Grant: in Proceedings of ASTM, vol. 56, pp. 91–103, 1956

  74. P. Caron, T. Khan, Y. Ohta, Y. Nakagawa, Superalloys 1988, pp. 215–24 (1988)

    Google Scholar 

  75. R. Coble, J. Appl. Phys., 1963, vol. 346, 1679–82

    Article  Google Scholar 

  76. A.T. Polonsky, M.P. Echlin, W.C. Lenthe, R.R. Dehoff, M.M. Kirka, T.M. Pollock, Mater. Charact., 2018, vol. 143, 171–81

    Article  CAS  Google Scholar 

  77. C.S. Kim, C.Y. Hyun, K.Y. Jhang, Int. J. Mod. Phys. B, 2011, vol. 2510, 1385–92

    Article  Google Scholar 

  78. M. Kirka, K. Brindley, R. Neu, S. Antolovich, S. Shinde, P. Gravett, Int. J. Fatigue, 2015, vol. 81, 191–201

    Article  CAS  Google Scholar 

  79. M. Kirka, K. Brindley, R. Neu, S. Antolovich, S. Shinde, P. Gravett, Int. J. Fatigue, 2015, vol. 81, 48–60

    Article  CAS  Google Scholar 

  80. F.R. Nabarro, Metall. Mater. Trans. A, 1996, vol. 273, 513–30

    Article  Google Scholar 

  81. O. Paris, M. Fa, E. Fa, T. Pollock, P. Fratzl, et al., Acta Mater., 1997, vol. 453, 1085–97

    Article  Google Scholar 

  82. N. Matan, D. Cox, C. Rae, R. Reed, Acta Mater., 1999, vol. 477, 2031–45

    Article  Google Scholar 

  83. R. MacKay, M. Nathal, Acta Metall. Mater., 1990, vol. 386, 993–1005

    Article  Google Scholar 

  84. A. Epishin, T. Link, H. Klingelhöffer, B. Fedelich, P. Portella, Mater. High Temp., 2010, vol. 271, 53–59

    Article  Google Scholar 

  85. A. Brailsford, P. Wynblatt, Acta Metall., 1979, vol. 273, 489–97

    Article  Google Scholar 

  86. H. Huang, G. Liu, H. Wang, A. Ullah, B. Hu, Metall. Mater. Trans. A, 2020, vol. 513A, 1075–84

    Article  Google Scholar 

  87. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 191-192, 35–50

    Article  Google Scholar 

Download references

Acknowledgments

Research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, and Office of Fossil Energy, Crosscutting Research Program, under contract DE-AC05-00OR22725 with UT-Battelle LLC and performed in partiality at the Oak Ridge National Laboratorys Manufacturing Demonstration Facility, an Office of Energy Efficiency and Renewable Energy user facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patxi Fernandez-Zelaia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Manuscript submitted March 5, 2020; accepted October 30, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Zelaia, P., Acevedo, O.D., Kirka, M.M. et al. Creep Behavior of a High-\(\gamma^{\prime}\) Ni-Based Superalloy Fabricated via Electron Beam Melting. Metall Mater Trans A 52, 574–590 (2021). https://doi.org/10.1007/s11661-020-06095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06095-3

Navigation