Skip to main content
Log in

Linear Convergence of a Rearrangement Method for the One-dimensional Poisson Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a rearrangement method for solving a maximization problem associated with Poisson’s equation with Dirichlet boundary conditions. The maximization problem is to find the forcing within a certain admissible set as to maximize the total displacement. The rearrangement method alternatively (i) solves the Poisson equation for a given forcing and (ii) defines a new forcing corresponding to a particular super-level-set of the solution. Rearrangement methods are frequently used for this problem and a wide variety of similar optimization problems due to their convergence guarantees and observed efficiency; however, the convergence rate for rearrangement methods has not generally been established. In this paper, for the one-dimensional problem, we establish linear convergence. We also discuss the higher dimensional problem and provide computational evidence for linear convergence of the rearrangement method in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Antunes, P.R., Mohammadi, S.A., Voss, H.: A nonlinear eigenvalue optimization problem: Optimal potential functions. Nonlinear Anal.: Real World Appl. 40, 307–327 (2018). https://doi.org/10.1016/j.nonrwa.2017.09.003

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media (2010). https://doi.org/10.1007/978-0-387-70914-7

  3. Burton, G.R.: Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann. 276(2), 225–253 (1987). https://doi.org/10.1007/bf01450739

    Article  MathSciNet  MATH  Google Scholar 

  4. Burton, G.R.: Variational problems on classes of rearrangements and multiple configurations for steady vortices. Annal. de l’Inst. Henri Poincare (C) Non Linear Anal. 6(4), 295–319 (1989). https://doi.org/10.1016/s0294-1449(16)30320-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Burton, G.R., McLeod, J.B.: Maximisation and minimisation on classes of rearrangements. Proc. Royal Soc. Edinburgh Sect. A: Math. 119(3–4), 287–300 (1991). https://doi.org/10.1017/s0308210500014840

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Chou, C.S., Kao, C.Y.: Minimizing eigenvalues for inhomogeneous rods and plates. J. Sci. Comput. 69(3), 983–1013 (2016). https://doi.org/10.1007/s10915-016-0222-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Chugunova, M., Jadamba, B., Kao, C.Y., Klymko, C., Thomas, E., Zhao, B.: Study of a mixed dispersal population dynamics model. In: Topics in Numerical Partial Differential Equations and Scientific Computing, pp. 51–77. Springer (2016). https://doi.org/10.1007/978-1-4939-6399-7

  8. Conca, C., Laurain, A., Mahadevan, R.: Minimization of the ground state for two phase conductors in low contrast regime. SIAM J. Appl. Math. 72(4), 1238–1259 (2012). https://doi.org/10.1137/110847822

    Article  MathSciNet  MATH  Google Scholar 

  9. Cox, S.J.: The two phase drum with the deepest bass note. Japan J. Indus. Appl. Math. 8(3), 345–355 (1991). https://doi.org/10.1007/BF03167141

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuccu, F., Porru, G.: Symmetry of solutions to optimization problems related to partial differential equations. Proc. Royal Soc. Edinburgh Sect. A: Math. 136(5), 921–934 (2006). https://doi.org/10.1017/s0308210500004807

    Article  MathSciNet  MATH  Google Scholar 

  11. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Springer Science & Business Media (2006). https://doi.org/10.1007/3-7643-7706-2

  12. Hintermüller, M., Kao, C.Y., Laurain, A.: Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions. Appl. Math. Optim. 65(1), 111–146 (2012). https://doi.org/10.1007/s00245-011-9153-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Kang, D., Choi, P., Kao, C.Y.: Minimization of the first non-zero eigenvalue problem for two-phase conductors with Neumann boundary conditions. SIAM J. Appl. Math. 80(4), 1607–1628 (2020). https://doi.org/10.1137/19m1251709

    Article  MathSciNet  MATH  Google Scholar 

  14. Kang, D., Kao, C.Y.: Minimization of inhomogeneous biharmonic eigenvalue problems. Appl. Math. Model. 51, 587–604 (2017). https://doi.org/10.1016/j.apm.2017.07.015

    Article  MathSciNet  MATH  Google Scholar 

  15. Kao, C.Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5(2), 315–335 (2008). https://doi.org/10.3934/mbe.2008.5.315

    Article  MathSciNet  MATH  Google Scholar 

  16. Kao, C.Y., Mohammadi, S.A.: Extremal rearrangement problems involving Poisson’s equation with Robin boundary conditions. J. Sci. Comput. submitted (2019)

  17. Kao, C.Y., Osting, B.: Extremal spectral gaps for periodic Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations (2018). https://doi.org/10.1051/cocv/2018029

  18. Kao, C.Y., Su, S.: Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54(2–3), 492–512 (2013). https://doi.org/10.1007/s10915-012-9629-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Laurain, A.: Global minimizer of the ground state for two phase conductors in low contrast regime. ESAIM Control, Optim. Calculus Var. 20(2), 362–388 (2014). https://doi.org/10.1051/cocv/2013067

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohammadi, A., Bahrami, F.: A nonlinear eigenvalue problem arising in a nanostructured quantum dot. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3053–3062 (2014). https://doi.org/10.1016/j.cnsns.2013.11.017

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohammadi, S.A.: Extremal energies of Laplacian operator: Different configurations for steady vortices. J. Math. Anal. Appl. 448(1), 140–155 (2017). https://doi.org/10.1016/j.jmaa.2016.09.011

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohammadi, S.A., Bahrami, F.: Extremal principal eigenvalue of the bi-Laplacian operator. Appl. Math. Model. 40(3), 2291–2300 (2016). https://doi.org/10.1016/j.apm.2015.09.058

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohammadi, S.A., Bozorgnia, F., Voss, H.: Optimal shape design for the p-laplacian eigenvalue problem. J. Sci. Comput. 78(2), 1231–1249 (2019). https://doi.org/10.1007/s10915-018-0806-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Mohammadi, S.A., Voss, H.: A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter. Nonlinear Anal.: Real World Appl. 31, 119–131 (2016). https://doi.org/10.1016/j.nonrwa.2016.01.015

    Article  MathSciNet  MATH  Google Scholar 

  25. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Polya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. (AM-27). Princeton University Press (1951). https://doi.org/10.1515/9781400882663

Download references

Acknowledgements

The authors would like to thank the Mathematics Division, National Center of Theoretical Sciences, Taipei, Taiwan for hosting a research pair program during June 15-June 30, 2019 to support this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braxton Osting.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chiu-Yen Kao is supported in part by an NSF Grant DMS-1818948. Braxton Osting acknowledges partial support from NSF DMS 16-19755 and 17-52202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, CY., Mohammadi, S.A. & Osting, B. Linear Convergence of a Rearrangement Method for the One-dimensional Poisson Equation. J Sci Comput 86, 6 (2021). https://doi.org/10.1007/s10915-020-01389-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01389-5

Keywords

Mathematics Subject Classification

Navigation