Skip to main content
Log in

Phytoplankton growth and grazing mortality through the oligotrophic subtropical North Pacific

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The subtropical North Pacific has been historically considered as a stable and homogenous oligotrophic marine ecosystem. The consistently low phytoplankton biomass has been attributed to a close balance between phytoplankton growth and grazing mortality. However, phytoplankton summer blooms were frequently observed in the central North Pacific near the Hawaiian Islands. To determine whether this is a result of unbalanced phytoplankton growth and microzooplankton grazing, we conducted a trans-Pacific cruise through the subtropical North Pacific. The growth and microzooplankton grazing mortality rates of the phytoplankton community and specific groups in the surface layer (10 m), were examined by dilution experiments. Positive phytoplankton net growth rates (0.34 ± 0.29 day−1) were observed under the depletion of dissolved inorganic nitrogen (DIN, < 40 nM) throughout the study area. However, considering the grazing of micro- and mesozooplankton collectively, the phytoplankton growth was largely consumed (net growth rate of 0.08 ± 0.15 day−1), except in the central North Pacific (net growth rate of 0.42 ± 0.11 day−1). Phytoplankton biomass accumulation in this area was also demonstrated by the satellite-observed Chl a, although this was just sustained for a few days. The high phytoplankton growth rate in the central North Pacific (0.84 ± 0.26 day−1) was a result of the dominant Prochlorococcus, which contributed 88% of the community Chl a. The weak response of Prochlorococcus growth to ammonium addition indicates their growth (1.14 ± 0.55 day−1) was not limited by the ambient DIN and was likely a result of their advantage of utilizing various dissolved organic nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azam F, Fenchel T, Field JG et al (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10(3):257–263

    Article  Google Scholar 

  • Behrenfeld M, O’Malley R, Boss E et al (2016) Revaluating ocean warming impacts on global phytoplankton. Nat Clim Change 6:323–330

    Article  Google Scholar 

  • Berthelot H, Duhamel S, L’helguen S et al (2019) NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J 13(3):651–662

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789

    Article  Google Scholar 

  • Burkill PH, Mantoura RFC, Llewellyn CA et al (1987) Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar Biol 93(4):581–590

    Article  Google Scholar 

  • Calbet A (2001) Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnol Oceanogr 46(7):1824–1830

    Article  Google Scholar 

  • Calbet A (2008) The trophic roles of microzooplankton in marine systems. ICES J Mar Sci 65(3):325–331

    Article  Google Scholar 

  • Calbet A, Alcaraz M (2009) Microzooplankton, key organisms in the pelagic food web. Fish Aquac 5:227–242

    Google Scholar 

  • Calbet A, Landry MR (1999) Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnol Oceanogr 44(6):1370–1380

    Article  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49(1):51–57

    Article  Google Scholar 

  • Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38(2):157–167

    Article  Google Scholar 

  • Calbet A, Saiz E (2013) Effects of trophic cascades in dilution grazing experiments: from artificial saturated feeding responses to positive slopes. J Plankton Res 35(6):1183–1191

    Article  Google Scholar 

  • Calbet A, Landry MR, Nunnery S (2001) Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquat Microb Ecol 23(3):283–292

    Article  Google Scholar 

  • Calbet A, Trepat I, Almeda R et al (2008) Impact of micro-and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments. Aquat Microb Ecol 50(2):145–156

    Article  Google Scholar 

  • Chen B (2015) Assessing the accuracy of the “two-point” dilution technique. Limnol Oceanogr Methods 13(10):521–526

    Article  Google Scholar 

  • Chen B, Laws EA (2017) Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol Oceanogr 62(2):806–817

    Article  Google Scholar 

  • Chen B, Liu H, Landry MR et al (2009) Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnol Oceanogr 54(4):1084–1097

    Article  Google Scholar 

  • Chen B, Wang L, Song S et al (2011) Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Cont Shelf Res 31(14):1527–1540

    Article  Google Scholar 

  • Chen B, Landry MR, Huang B et al (2012) Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol Oceanogr 57(2):519–526

    Article  Google Scholar 

  • Chen B, Zheng L, Huang B et al (2013) Seasonal and spatial comparisons of phytoplankton growth and mortality rates due to microzooplankton grazing in the northern South China Sea. Biogeosciences 10(4):2775–2785

    Article  Google Scholar 

  • Chisholm SW (2000) Oceanography: stirring times in the Southern Ocean. Nature 407(6805):685

    Article  Google Scholar 

  • Di Toro DM (1980) Applicability of cellular equilibrium and monod theory to phytoplankton growth kinetics. Ecol Model 8:201–218

    Article  Google Scholar 

  • Dore JE, Letelier RM, Church MJ et al (2008) Summer phytoplankton blooms in the oligotrophic North Pacific subtropical gyre: historical perspective and recent observations. Prog Oceanogr 76(1):2–38

    Article  Google Scholar 

  • DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res II 48(8–9):1983–2003

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  Google Scholar 

  • Follett CL, Dutkiewicz S, Karl DM et al (2018) Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations. ISME J 12(6):1543–1557

    Article  Google Scholar 

  • Fujiki T, Sasaoka K, Matsumoto K et al (2016) Seasonal variability of phytoplankton community structure in the subtropical western North Pacific. J Oceanogr 72(3):343–358

    Article  Google Scholar 

  • Furuya K (1990) Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: vertical profiles of phytoplankton biomass and its relationship with chlorophylla and particulate organic carbon. Mar Biol 107(3):529–539

    Article  Google Scholar 

  • Gallegos CL (1989) Microzooplankton grazing on phytoplankton in Rhode River, Maryland: nonlinear feeding kinetics. Mar Ecol Prog Ser 57(1):23–33

    Article  Google Scholar 

  • García-Fernández JM, de Marsac NT, Diez J (2004) Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 68(4):630–638

    Article  Google Scholar 

  • Hashihama F, Furuya K, Kitajima S et al (2009) Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophys Res Lett 36:L03610. https://doi.org/10.1029/2008GL036866

    Article  Google Scholar 

  • Hashihama F, Kanda J, Tauchi A et al (2015) Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP). Talanta 143:374–380

    Article  Google Scholar 

  • Hashihama F, Saito H, Shiozaki T et al (2020) Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Glob Biogeochem Cycles 34:e2020GB006669

    Article  Google Scholar 

  • Jeong HJ, YooY Du, Park JY et al (2005) Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat Microb Ecol 40(2):133–150

    Article  Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the North Pacific subtropical gyre. Ecosystems 2(3):181–214

    Article  Google Scholar 

  • Karl DM (2002) Nutrient dynamics in the deep blue sea. Trends Microbiol 10(9):410–418

    Article  Google Scholar 

  • Karl D, Michaels A, Bergman B et al (2002) Dinitrogen fixation in the world’s oceans. In: Boyer EW, Howarth RW (eds) The nitrogen cycle at regional to global scales. Springer, Dordrecht, pp 47–98

    Chapter  Google Scholar 

  • Landry MR (2002) Integrating classical and microbial food web concepts: evolving views from the open-ocean tropical Pacific. Hydrobiologia 480(1–3):29–39

    Article  Google Scholar 

  • Landry MR, Decima M (2017) Protistan microzooplankton and the trophic position of tuna: quantifying the trophic link between micro- and mesozooplankton in marine foodwebs. ICES J Mar Sci 74(7):1885–1892

    Article  Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67(3):283–288

    Article  Google Scholar 

  • Landry MR, Monger BC, Selph KE et al (1993) Time-dependency of microzooplankton grazing and phytoplankton growth in the subarctic Pacific. Prog Oceanogr 32(1):205–222

    Article  Google Scholar 

  • Landry MR, Brown SL, Neveux J et al (2003) Phytoplankton growth and microzooplankton grazing in high-nutrient, low-chlorophyll waters of the equatorial Pacific: community and taxon-specific rate assessments from pigment and flow cytometric analyses. J Geophys Res 108(C12):8142

    Article  Google Scholar 

  • Landry MR, Brown SL, Rii YM et al (2008) Depth-stratified phytoplankton dynamics in Cyclone Opal, a subtropical mesoscale eddy. Deep Sea Res II 55(10–13):1348–1359

    Article  Google Scholar 

  • Landry MR, Selph KE, Taylor AG et al (2011) Phytoplankton growth, grazing and production balances in the HNLC equatorial Pacific. Deep Sea Res II 58(3–4):524–535

    Article  Google Scholar 

  • Laws EA, Redalje DG, Haas LW et al (1984) High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters 1. Limnol Oceanogr 29(6):1161–1169

    Article  Google Scholar 

  • Laws EA, DiTullio GR, Redalje DG (1987) High phytoplankton growth and production rates in the North Pacific subtropical gyre 1, 2. Limnol Oceanogr 32(4):905–918

    Article  Google Scholar 

  • Letelier RM, Karl DM (1996) Role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Mar Ecol Prog Ser 133:263–273

    Article  Google Scholar 

  • Letelier RM, Karl DM, Abbott MR et al (2004) Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific subtropical gyre. Limnol Oceanogr 49(2):508–519

    Article  Google Scholar 

  • Liu H, Nolla HA, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12(1):39–47

    Article  Google Scholar 

  • Longhurst AR (1998) Ecological geography of the sea. Academic Press, San Diego

    Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW et al (1996) CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    Article  Google Scholar 

  • Marañón E, Cermeño P, Huete-Ortega M et al (2014) Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS One 9(6):e99312

    Article  Google Scholar 

  • Marañón E, Lorenzo MP, Cermeño P et al (2018) Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J 12(7):1836

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579

    Article  Google Scholar 

  • Miki M, Ramaiah N, Takeda S et al (2008) Phytoplankton dynamics associated with the monsoon in the Sulu Sea as revealed by pigment signature. J Oceanogr 64(5):663–673

    Article  Google Scholar 

  • Moore LR, Post AF, Rocap G et al (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47(4):989–996

    Article  Google Scholar 

  • Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J Geophys Res 93(C9):10749–10768

    Article  Google Scholar 

  • Morel A, Claustre H, Gentili B (2010) The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 7(10):3139–3151

    Article  Google Scholar 

  • Murrell MC, Stanley RS, Lores EM et al (2002) Linkage between microzooplankton grazing and phytoplankton growth in a Gulf of Mexico estuary. Estuaries 25(1):19–29

    Article  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER et al (1990) Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res A 37(6):1033–1051

    Article  Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW et al (2003) The genome of a motile marine Synechococcus. Nature 424(6952):1037

    Article  Google Scholar 

  • Pierce D (2019) ncdf4: Interface to unidata netCDF (Version 4 or Earlier) format data files. R package version 1.16.1. https://CRAN.R-project.org/package=ncdf4. Accessed 11 Nov 2020

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34(6):1097–1103

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 11 Nov 2020

  • Riebesell U, Schulz KG, Bellerby RG et al (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450(7169):545–548

    Article  Google Scholar 

  • Riemann B, Simonsen P, Stensgaard L (1989) The carbon and chlorophyll content of phytoplankton from various nutrient regimes. J Plankton Res 11(5):1037–1045

    Article  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J et al (2004) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424(6952):1042

    Article  Google Scholar 

  • Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666(1):181–196

    Article  Google Scholar 

  • Schlitzer R (2019) Ocean data view. https://odv.awi.de. Accessed 11 Nov 2020

  • Schmoker C, Hernández-León S, Calbet A (2013) Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J Plankton Res 35(4):691–706

    Article  Google Scholar 

  • Selph KE, Shacat J, Landry MR (2005) Microbial community composition and growth rates in the NW Pacific during spring 2002. Geochem Geophys Geosyst 6:Q12M05

    Article  Google Scholar 

  • Serra-Pompei C, Hagstrom GI, Visser AW et al (2019) Resource limitation determines temperature response of unicellular plankton communities. Limnol Oceanogr 64(4):1627–1640

    Article  Google Scholar 

  • Steinberg DK, Saba GK (2008) Nitrogen consumption and metabolism in marine zooplankton. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment. Elsevier Inc., Amsterdam, pp 1135–1196

    Chapter  Google Scholar 

  • Stoecker DK, Taniguchi A, Michaels AE et al (1989) Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar Ecol Prog Ser 50(3):241–254

    Article  Google Scholar 

  • Stoecker DK, Hansen PJ, Caron DA et al (2017) Mixotrophy in the marine Plankton. Ann Rev Mar Sci 9(1):311–335

    Article  Google Scholar 

  • Strom SL, Welschmeyer NA (1991) Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnol Oceanogr 36(1):50–63

    Article  Google Scholar 

  • Strom SL, Macri EL, Olson MB et al (2007) Microzooplankton grazing in the coastal Gulf of Alaska: variations in top-down control of phytoplankton. Limnol Oceanogr 52(4):1480–1494

    Article  Google Scholar 

  • Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25(11):1331–1346

    Article  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide. J Oceanogr Soc Jpn 46(4):190–194

    Article  Google Scholar 

  • Thingstad TF, Aksnes DL (2019) Why growth of nutrient-limited micro-organisms should have low-temperature sensitivity. ISME J 13(2):557–558

    Article  Google Scholar 

  • Utermöhl H (1958) Toward the improvement of the quantitative phytoplankton method. [Zur Vervolkommung der quantitativen Phytoplankton-Methodik]. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Uye S, Nagano N, Tamaki H et al (1996) Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. J Oceanogr 52(6):689–703

    Article  Google Scholar 

  • Verity PG, Lagdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids In Narragansett Bay. J Plankton Res 6(5):859–868

    Article  Google Scholar 

  • Villareal TA, Adornato L, Wilson C et al (2011) Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in the North Pacific gyre: a disconnect. J Geophys Res Oceans 116:C03001

    Article  Google Scholar 

  • Villareal TA, Brown CG, Brzezinski MA et al (2012) Summer diatom blooms in the North Pacific subtropical gyre: 2008–2009. PLoS One 7(4):e33109

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992

    Article  Google Scholar 

  • White AE, Spitz YH, Letelier RM (2007) What factors are driving summer phytoplankton blooms in the North Pacific subtropical gyre? J Geophys Res Oceans 112:C12006

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wilson C (2003) Late summer chlorophyll blooms in the oligotrophic North Pacific subtropical gyre. Geophys Res Lett 30(18):1942

    Article  Google Scholar 

  • Wilson SE, Steinberg DK (2010) Autotrophic picoplankton in mesozooplankton guts: evidence of aggregate feeding in the mesopelagic zone and export of small phytoplankton. Mar Ecol Prog Ser 412:11–27

    Article  Google Scholar 

  • Wilson C, Villareal TA, Maximenko N et al (2008) Biological and physical forcings of late summer chlorophyll blooms at 30°N in the oligotrophic Pacific. J Mar Syst 69(3–4):164–176

    Article  Google Scholar 

  • Worden AZ, Binder BJ (2003) Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb Ecol 30(2):159–174

    Article  Google Scholar 

  • Wright SW, van den Enden RL, Pearce I et al (2010) Phytoplankton community structure and stocks in the Southern Ocean (30–80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res II 57(9–10):758–778

    Article  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  Google Scholar 

  • Zöllner E, Hoppe HG, Sommer U et al (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr 54(1):262–275

    Article  Google Scholar 

  • Zubkov MV, Tarran GA (2005) Amino acid uptake of Prochlorococcus spp. in surface waters across the South Atlantic Subtropical Front. Aquat Microb Ecol 40(3):241–249

    Article  Google Scholar 

  • Zubkov MV, Fuchs BM, Tarran GA et al (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69(2):1299–1304

    Article  Google Scholar 

  • Zubkov MV, Tarran GA, Fuchs BM (2004) Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiol Ecol 50(3):153–161

    Article  Google Scholar 

Download references

Acknowledgements

This cruise, identified as KH-17-4, was performed under the cooperative research system of the Atmosphere and Ocean Research Institute, the University of Tokyo. We thank the captain and crew of the R/V Hakuho-Maru for their cooperation at sea. We thank Ocean Biology Processing Group (OBPG) for providing the satellite observed data. Kazutaka Takahashi and Sijun Chen kindly supported the HPLC analysis. We also acknowledge Mitsuhide Sato and Sachiko Horii for providing their unpublished data which was used for our further discussion. Andrew Hirst kindly revised the manuscript. This study was partly supported by JSPS/MEXT KAKENHI 24121003 (HS, FH) and the Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries (SKED) funded by the MEXT (HS).

Author information

Authors and Affiliations

Authors

Contributions

SJ and HS conceived and designed the study. SJ performed the dilution experiments and analysis. FH performed the nutrients analysis by the highly sensitive liquid waveguide spectrophotometry. SJ wrote the manuscript and prepared the tables and figures. All authors edited the manuscript.

Corresponding author

Correspondence to Siyu Jiang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Hashihama, F. & Saito, H. Phytoplankton growth and grazing mortality through the oligotrophic subtropical North Pacific. J Oceanogr 77, 505–521 (2021). https://doi.org/10.1007/s10872-020-00580-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-020-00580-4

Keywords

Navigation