Skip to main content

Advertisement

Log in

Historical observations for a sparsely recorded woodland butterfly are used to determine factors driving distribution change and to identify conservation strategies

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

A dataset of 1621 records of the butterfly Limenitis populi from 1960 to 2018 was compiled using data gathered in France. Limenitis populi is a poorly recorded species with a mean of 27.2 ± 14.6 records per year during this period. The aim of the study was to describe and evaluate the impact of global warming since the 1990’s on the phenology and rang in France. Using linear mixed models, we estimated a delay in adult emergence of 0.07 days per 100 m increase in altitude and an advance of 0.33 days per 1 °C of mean temperature increase. Since 1960, the mean altitude of L. populi populations has increased by 321.9 m over the last 58 years, corresponding to a gain of mean temperature of 1.74 °C during this period. By comparing projections from climatic models, 60.2% of the suitable area predicted prior to 1990 has since been lost due to warming conditions. Lowlands are more affected by a decline in areas sheltering L. populi than montane regions probably because lowland populations cannot shift to higher altitudes as a means of mitigating the effect of global warming. In addition, changes in the rural landscape may lead to the possible decline of the larval food plant Populus tremula, thus affecting butterfly abundance. In terms of conservation strategy.

Implications for Insect Conservation

The key points are (1) to avoid cutting the host plant in montane areas where climatic constraints are not a threat, and (2) to develop forest patches that include P. tremula in lowlands to locally limit the effect of global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auverlot E (1977) Complément concernant la répartition de Limenitis populi L. Bull Soc Sci Nat 15:15

    Google Scholar 

  • Bachelard P, Deschamps P (2003) Lépidoptères et Coléoptères observés au cours de la sortie de la SEF au Lioran en juin 2003. Arvernsis 27–28:30–32

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Betz JT (1966) Lépidoptéristes sachez choisir vos dates pour chasser (2ème note) (Nymphalidae). Alexanor 4:356–358

    Google Scholar 

  • Boitier E, Petit D, Descimon H, Bachelard P (2008) Decreasing elevational range of Parnassius apollo (Lepidoptera, Papilionidae) in the northern part of Massif-Central: a response to global warming effect. In: Proceedings of the 1st entomological meeting of Massif-Central (ed) Parc naturel régional Livradois-Forez et Société d’Histoire naturelle Alcide-d’Orbigny. pp 15–25

  • Boudinot J (1987) Ethologie et cycle biologique de Limenitis populi (Linné). Alexanor 15:67–79

    Google Scholar 

  • Brooks SJ, Self A, Toloni F, Sparks T (2014) Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. Int J Biometeorol 58:1749–1758

    PubMed  Google Scholar 

  • Burgunder M (1972) Limenitis populi L. dans le Doubs. Bull Soc Sci Nat 15:15

    Google Scholar 

  • Ceccarelli S, Rabinovich JE (2015) Global climate change effects on Venezuela’s vulnerability to chagas disease is linked to the geographic distribution of five triatomine species. J Med Entomol 52:1333–1343

    PubMed  Google Scholar 

  • De Arce Crespo JI, Gutierrez D (2011) Altitudinal trends in the phenology of butterflies in a mountainous area in central Spain. Eur J Entomol 108:651–658

    Google Scholar 

  • de Rigo D, Caudullo G, Durrant TH, San-Miguel-Ayanz J (2016) The European Atlas of Forest Tree Species: modelling, data and information on forest tree species, In: Publications Office of the European Union (ed) FISE Comm. pp 40–45

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Divers Distrib 17:43–57

    Google Scholar 

  • Essens T, van Langevelde F, Vos RA, Van Swaay CAM, Wallis De Vries MF (2017) Ecological determinants of butterfly vulnerability across the European continent. J Insect Conserv 21:439–450

    Google Scholar 

  • Filz KJ, Wiemers M, Herrig A, Weitzel M, Schmitt T (2013) A question of adaptability: climate and habitat change lower trait diversity in butterfly communities in south-western Germany. Eur J Entomol 110:633–642

    Google Scholar 

  • GBIF.org (2020) Custom data export (29 June 2020). https://doi.org/10.15468/dl.n9chf5https://www.gbif.org/fr/species/5132183

  • Gorbach VV, Saarinenb K, Reznichenkoa ES (2010) On the Ecology of the Poplar Admiral (Limenitis populi, Lepidoptera, Nymphalidae) in Eastern Fennoscandia. Entomol Rev 90:989–998

    Google Scholar 

  • Guo K, Jianxing Sun O, Kang L (2016) The responses of insects to global warming. In: Liu T, Kang L (eds) Recent advances in entomological research. Springer, New York, pp 118–123

    Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    CAS  PubMed  Google Scholar 

  • Harrison X, Donaldson L, Correa-Cano M, Evans J, Fisher D, Goodwin C, Robinson B, Hodgson D, Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794. https://doi.org/10.7717/peerj.4794

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org

  • Johnson KG, Brooks SJ, Fenberg PB, Glover AG, James KE, Lister AM, Michel E, Spencer M, Todd JA, Valsami-Jones E, Young JR, Stewart JR (2011) Climate change and biosphere response: unlocking the collections vault. BioScience 61(2):147–153

    Google Scholar 

  • Kantonen P (2013) Havaintoja haapaperhosen (Limenitis populi, L. 1758) (Nymphalidae) elinympäristöstä ja elintavoista. Baptria 38:26–31

    Google Scholar 

  • Kantonen P (2013) Havaintoja haapaperhosen (Limenitis populi, L. 1758) (Nymphalidae) käyttäytymisestä ja kuolleisuuteen vaikuttavista tekijöistä. Baptria 38:108–113

    Google Scholar 

  • Kantonen P (2014) Kokemuksia haapaperhosen (Limenitis populi, L. 1758) (Nymphalidae) kasvatuksesta. Baptria 39:70–75

    Google Scholar 

  • Kharouba HM, Paquette SR, Kerr JT, Vellend M (2014) Predicting the sensitivity of butterfly phenology to temperature over the past century. Glob Change Biol 20:504–514

    Google Scholar 

  • Kharouba HM, Lewthwaite JMM, Guralnick R, Kerr JT, Vellend M (2018) Using insect natural history collections to study global change impacts: challenges and opportunities. Theme Issue: biological collections for understanding biodiversity in the Anthropocene. Philos Trans R Soc B 374:20170405

    Google Scholar 

  • Kudrna O, Pennerstorfer J, Lux K (2015) Distribution atlas of European butterflies and skippers. Wissenschaftlicher Verlag Peks, Schwanfeld

    Google Scholar 

  • Kuussaari M, Heliölä J, Pöyry J, Saarinen K (2007) Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J Insect Conserv 11:351–366

    Google Scholar 

  • Lafranchis T (2000) Limenitis populi. In: Parthénope Biotope (ed) Les papillons de jour de France Belgique et Luxembourg et leurs chenilles. Mèze, pp 372–373

  • Lafranchis T, Jutzeler D, Guillosson JY, Kan B, Kan P (2015) Le Grand Sylvain In: Diathéo (ed) La vie des Papillons de France: écologie, biologie et comportement des Rhopalocères de France. Barcelone, pp 404–408

  • Lister A, Brooks SJ, Fenberg PB, Young JR et al (2011) Natural history collections as sources of long-term datasets. Trends Ecol Evol 26:153–154. https://doi.org/10.1016/j.tree.2010.12.009

    Article  PubMed  Google Scholar 

  • Liu C, Newell G, White M (2016) On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evol 6:337–348

    PubMed  Google Scholar 

  • Mattila N, Kaitala V, Komonen A, Paivinen J, Kotiaho JS (2011) Ecological correlates of distribution change and range shift in butterflies. Insect Conserv Diver 4:239–246

    Google Scholar 

  • Meineke E, Davies T, Daru B, Davis C (2018) Biological collections for understanding biodiversity in the Anthropocene. Philos Trans R Soc B 374:20170386

    Google Scholar 

  • Merow C, Smith MJ, Edwards TC, Guisan A, McMahon SM, Normand S, Thuiller W, Wüest RO, Zimmermann NE, Elith J (2014) What do we gain from simplicity versus complexity in species distribution models? Ecography 37:1267–1281

    Google Scholar 

  • Mothiron P, Hoddé C (2018) Les carnets du Lépidoptériste Français. http://www.lepinet.fr. accessed 20 Jan 2018

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210X.12261

    Article  Google Scholar 

  • Nieto-Sánchez S, Gutiérrez D, Wilson RJ (2015) Long-term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Divers Distrib 21:950–961

    Google Scholar 

  • Pasquier G (1982) Limenitis populi en Haute-Vienne. Bull Soc Sci Nat 34:8

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Google Scholar 

  • Pöyry J, Luotow M, Heikkinen RK, Kuussaari M, Saarinen K (2009) Species traits explain recent range shifts of Finnish Butterflies. Glob Change Biol 15:732–743. https://doi.org/10.1111/j.1365-2486.2008.01789.x

    Article  Google Scholar 

  • ProNatura (1987) Limenitis populi In: Ligue Suisse pour la protection de la nature (ed) Les papillons de jour et leurs biotopes. Espèces. Dangers qui les menacent. Protection. Bâle, pp 169–172

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void filling interpolation methods for SRTM data. Int J Geogr Inf Sci 21:983–1008

    Google Scholar 

  • Rigout J (1969) Observations et captures intéressantes (Nymphalidae, Papilionidae). Alexanor 6:174–176

    Google Scholar 

  • Roth T, Plattner M, Amrhein V (2014) Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 9:e82490

    PubMed  PubMed Central  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Change Biol 6:407–416

    Google Scholar 

  • Saarinen K, Lahti T, Martilla O (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodivers Conserv 12:2147–2159

    Google Scholar 

  • San-Miguel-Ayanz J, de Rigo D, Caudullo G, et al (2016) Populus tremula in Europe: distribution, habitat, usage and threats. In: Publication Office of the European Union (ed) European Atlas of Forest Tree Species. Luxembourg, pp 138–139

  • Savourey M (2009) Chroniques entomologique savoyardes 3. Le Grand Sylvain (Lep. Nymphalidae). Oreina 4:26

    Google Scholar 

  • Seong-Jin H, Sun Young K, Nergui R, Kyoungha H, Seong-Hyun K, Nam Jung K (2014) Temperature-Dependent Development of the Swallowtail Butterfly, Sericinus montela Gray. Int J Ind Entom 29:153–161

    Google Scholar 

  • Settele J, Kudrna O, Harpke A et al (2008) Climatic risk atlas of European butterflies. Bio risk 1 special issue. Pensoft, Sofia

    Google Scholar 

  • Tingley MW, Beissinger SR (2009) Detecting range shifts from historical species occurrences: New perspectives on old data. Trends Ecol Evol 24:625–633

    PubMed  Google Scholar 

  • Tolman T, Lewington R (1987) Guide des papillons d’Europe et d’Afrique du Nord. Delachaux & Niestlé, Neuchâtel

    Google Scholar 

  • UICN France MNHN OPIE & SEF (2014) La Liste rouge des espèces menacées en France - Chapitre Papillons de jour de France métropolitaine. Paris

  • Urbani F, D’Alessandro P, Biondi M (2017) Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change. Bull insectology 70:21

    Google Scholar 

  • Van Swaay CAM, Warren MS (2012) Developing butterflies as indicators in Europe: current situation and future options. De Vlinderstichting/Dutch Butterfly Conservation, Butterfly Conservation UK, Butterfly Conservation Europe, Wageningen, reportnr. VS2012.012

  • Van Swaay CAM, Van Strien AJ, Aghababyan K, et al (2016) The European Butterfly Indicator for Grassland species 1990–2015. Report VS2016.019, De Vlinderstichting, Wageningen

  • Varren T (1987) Limenitis populi L. et Endromis versicolora: nouvelles données de répartition (Lepidoptera Nymphalidae et Endromidae). Bull Soc Sci Nat 54:21

    Google Scholar 

  • Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  PubMed  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    PubMed  Google Scholar 

  • Weiss JC, Manil L (2011) Evolution récente de la faune lépidoptérologique de Lorraine et d’Alsace. Un appauvrissement inquiétant Lépidoptère 20:58–78

    Google Scholar 

  • Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268

    Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudi R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    PubMed  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13:1873–1887

    Google Scholar 

Download references

Acknowledgements

The singular sampling for such a discrete species demonstrates the relevance of history censuses, and the spirit of cooperation of the French lepidopterists network. We express our warmest thanks to Michel Savourey, Jean-Claude Weiss, Sylvain Delmas, François Fournier, Roland Essayan, Francois Radigue, Philippe Mothiron, Quentin Delorme, Mael Garrin, Nicolas Cotrel who immediately supported the approach and conveyed their records of several years. We also wish to thank Philippe Bachelard and Marie-Françoise Faure, Assistant Curators responsible for the Zoology Department at the Musée Henri-Lecoq in Clermont-Ferrand for permission to publish the data of this collection, as well as Jérôme Petitpretre and Monique Prost, Head of the Collection Department of the Museum-Jardin des Sciences in Dijon (MJSD), for having obtained the permission to used information about Limenitis populi from the contributors to the preliminary Atlas of Rhône-Alpes butterflies. Our thanks also go to Frédéric Mora, Entomological Scientific Director for transmitting and authorizing us to use the data of the Butterfly Atlas of Burgundy and Franche-Comté, as well as Stéphane Bence Conservatory of natural areas PACA, acting as SILENE Fauna Data Administrator, for facilitating our access to data from this region. Our thanks also go to Pauli Kantonen for our exchanges on his rigorous observations on the ecology of Limenitis populi. Finally, we wish to express our gratitude to Professor Anne Bruneau for her constructive rereading of the manuscript as well as to two anonymous referees for their valuable advice on a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Corradini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corradini, P., Serranito, B. & Petit, D. Historical observations for a sparsely recorded woodland butterfly are used to determine factors driving distribution change and to identify conservation strategies. J Insect Conserv 25, 109–121 (2021). https://doi.org/10.1007/s10841-020-00286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00286-4

Keywords

Navigation