Skip to main content
Log in

Classical field theory limit of many-body quantum Gibbs states in 2D and 3D

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We provide a rigorous derivation of nonlinear Gibbs measures in two and three space dimensions, starting from many-body quantum systems in thermal equilibrium. More precisely, we prove that the grand-canonical Gibbs state of a large bosonic quantum system converges to the Gibbs measure of a nonlinear Schrödinger-type classical field theory, in terms of partition functions and reduced density matrices. The Gibbs measure thus describes the behavior of the infinite Bose gas at criticality, that is, close to the phase transition to a Bose–Einstein condensate. The Gibbs measure is concentrated on singular distributions and has to be appropriately renormalized, while the quantum system is well defined without any renormalization. By tuning a single real parameter (the chemical potential), we obtain a counter-term for the diverging repulsive interactions which provides the desired Wick renormalization of the limit classical theory. The proof relies on a new estimate on the entropy relative to quasi-free states and a novel method to control quantum variances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Also known as canonical correlation or Bogoliubov scalar product.

  2. Note that the expectation \(\langle \mathrm {d}\Gamma (Pe ^{ik \cdot x}P) \rangle _0\) in \(\Gamma _0\) is the same as that in \((\Gamma _0)_P\).

  3. Our convention in this section is that all microscopic density matrices have a tilde, whereas the macroscopic ones do not.

References

  1. Albeverio, S., Röckner, M.: Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab. Theory Relat. Fields 89, 347–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammari, Z.: Scattering theory for a class of fermionic Pauli–Fierz models. J. Funct. Anal. 208, 302–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammari, Z.: Systèmes hamiltoniens en théorie quantique des champs: dynamique asymptotique et limite classique. University of Rennes I, Habilitation à Diriger des Recherches, February (2013)

  4. Ammari, Z., Nier, F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9, 1503–1574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ammari, Z., Nier, F.: Mean field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50, 042107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ammari, Z., Nier, F.: Mean field propagation of wigner measures and bbgky hierarchies for general bosonic states. J. Math. Pures Appl. 95, 585–626 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold, P., Moore, G.: BEC transition temperature of a dilute homogeneous imperfect Bose gas. Phys. Rev. Lett. 87, 120401 (2001)

    Article  Google Scholar 

  8. Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bagnato, V., Pritchard, D.E., Kleppner, D.: Bose–Einstein condensation in an external potential. Phys. Rev. A 35, 4354–4358 (1987)

    Article  Google Scholar 

  10. Bauerschmidt, R., Brydges, D., Slade, G.: Introduction to a Renormalisation Group Method, Volume of 2242 Lecture Notes in Mathematics. Springer, Singapore (2019)

    MATH  Google Scholar 

  11. Baym, G., Blaizot, J.-P., Holzmann, M., Laloë, F., Vautherin, D.: The transition temperature of the dilute interacting Bose gas. Phys. Rev. Lett. 83, 1703–1706 (1999)

    Article  Google Scholar 

  12. Baym, G., Blaizot, J.-P., Holzmann, M., Laloë, F., Vautherin, D.: Bose–Einstein transition in a dilute interacting gas. Eur. Phys. J. B 24, 107 (2001)

    Article  Google Scholar 

  13. Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics. Springer Briefs in Mathematical Physics, vol. 7. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  14. Benguria, R., Lieb, E.H.: Proof of the stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)

    Article  Google Scholar 

  15. Berezin, F.A.: Convex functions of operators. Mat. Sb. (N.S.) 88(130), 268–276 (1972)

    MathSciNet  Google Scholar 

  16. Bertini, L., Presutti, E., Rüdiger, B., Saada, E.: Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE. Teor. Veroyatnost. i Primenen. 38, 689–741 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Betz, V., Ueltschi, D.: Critical temperature of dilute Bose gases. Phys. Rev. A 81, 023611 (2010)

    Article  Google Scholar 

  18. Bisset, R.N., Davis, M.J., Simula, T.P., Blakie, P.B.: Quasicondensation and coherence in the quasi-two-dimensional trapped Bose gas. Phys. Rev. A 79, 033626 (2009)

    Article  Google Scholar 

  19. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross–Pitaevskii limit. Acta Math. 222, 219–335 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: The excitation spectrum of Bose gases interacting through singular potentials. J. Eur. Math. Soc. (JEMS) (2019) (in press)

  21. Boccato, C., Cenatiempo, S., Schlein, B.: Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. Henri Poincaré 18, 113–191 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bogoliubov Jr., N.N.: Dubna reports (unpublished). Physik. Abhandl. Sowjet Union 6, 113–229 (1962)

    Google Scholar 

  23. Bogoliubov Jr., N.N.: On model dynamical systems in statistical mechanics. Physica 32, 933–944 (1966)

    Article  MathSciNet  Google Scholar 

  24. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)

    Article  MATH  Google Scholar 

  25. Bourgain, J.: Invariant measures for the 2d-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176, 421–445 (1996)

    Article  MATH  Google Scholar 

  26. Bourgain, J.: Invariant measures for the Gross–Pitaevskii equation. J. Math. Pures Appl. 76, 649–702 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bourgain, J., Bulut, A.: Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: the 2D case. Ann. I. H. Poincare (C) 31, 1267–1288 (2014)

    Article  MATH  Google Scholar 

  28. Bourgain, J., Bulut, A.: Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3D case. J. Eur. Math. Soc. 16, 1289–1325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Brandão, F., Harrow, A.: Quantum de Finetti theorems under local measurements with applications. Commun. Math. Phys. 353, 469–506 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics, Texts and Monographs in Physics, 2nd edn. Springer, New York (2002)

    Google Scholar 

  31. Brennecke, C., Nam, P.T., Napiórkowski, M., Schlein, B.: Fluctuations of \(N\)-particle quantum dynamics around the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 36, 1201–1235 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Burq, N., Thomann, L., Tzvetkov, N.: Long time dynamics for the one dimensional non linear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 63, 2137–2198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cacciafesta, F., de Suzzoni, A.-S.: Invariant measure for the Schrödinger equation on the real line. J. Funct. Anal. 269, 271–324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge Lecture Notes in Physics, vol. 5. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  35. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. In: Sims, R., Ueltschi, D. (eds.) Entropy and the Quantum, vol. 529 of Contemporary Mathematics, American Mathematical Society, pp. 73–140 (2010). Arizona School of Analysis with Applications, March 16–20, 2009, University of Arizona

  36. Carlen, E.A., Lieb, E.H.: Remainder terms for some quantum entropy inequalities. J. Math. Phys. 55, 042201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann. Probab. 46, 2621–2679 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de finetti representation. J. Math. Phys. 43, 4537–4559 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chiribella, G.: On quantum estimation, quantum cloning and finite quantum de Finetti theorems. In: Theory of Quantum Computation, Communication, and Cryptography, vol. 6519 of Lecture Notes in Computer Science. Springer, New York (2011)

  40. Christandl, M., König, R., Mitchison, G., Renner, R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473–498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cornell, E.A., Wieman, C.E.: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  Google Scholar 

  42. da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 32, 1900–1916 (2003)

    MathSciNet  MATH  Google Scholar 

  43. De Bouard, A., Debussche, A., Fukuizumi, R.: Long time behavior of Gross–Pitaevskii equation at positive temperature. SIAM J. Math. Anal. 50, 5887–5920 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Delamotte, B.: A hint of renormalization. Am. J. Phys. 72, 170 (2004)

    Article  Google Scholar 

  45. Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  47. Dereziński, J., Napiórkowski, M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 1–31 (2014)

  48. Deuchert, A., Seiringer, R.: Gross-Pitaevskii Limit of a Homogeneous Bose Gas at Positive Temperature. Arch. Rational. Mech. Anal. 236, 1217–1271 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Deuchert, A., Seiringer, R., Yngvason, J.: Bose-Einstein condensation in a dilute, trapped gas at positive temperature. Commun. Math. Phys. 368, 723–776 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Dolbeault, J., Felmer, P., Loss, M., Paturel, E.: Lieb–Thirring type inequalities and Gagliardo–Nirenberg inequalities for systems. J. Funct. Anal. 238, 193–220 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dyson, F.J.: The \(S\) matrix in quantum electrodynamics. Phys. Rev. (2) 75, 1736–1755 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  52. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  MathSciNet  Google Scholar 

  53. Falk, H., Bruch, L.W.: Susceptibility and fluctuation. Phys. Rev. 180, 442–444 (1969)

    Article  Google Scholar 

  54. Fannes, M., Spohn, H., Verbeure, A.: Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. Farina, J.: Variance and covariance in quantum mechanics and the spreading of position probability. Int. J. Theor. Phys. 21, 83–103 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Mat. Iberoamericana 2, 119–213 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  57. Feynman, R.: Statistical Mechanics, A Set of Lectures, Frontiers in Physics. CBC Press, Boca Raton (1998)

    MATH  Google Scholar 

  58. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  59. Fritz, J., Rüdiger, B.: Time dependent critical fluctuations of a one-dimensional local mean field model. Probab. Theory Relat. Fields 103, 381–407 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  60. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: Gibbs measures of nonlinear Schrödinger equations as limits of many-body quantum states in dimensions \(d \leqslant 3\). Commun. Math. Phys. 356, 883–980 (2017)

    Article  MATH  Google Scholar 

  61. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: A microscopic derivation of time-dependent correlation functions of the 1 \(D\) cubic nonlinear Schrödinger equation. Adv. Math. 353, 67–115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  62. Fröhlich, J., Knowles, A., Schlein, B., Sohinger, V.: The mean-field limit of quantum Bose gases at positive temperature (2020). arXiv:2001.01546

  63. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    Article  MathSciNet  Google Scholar 

  64. Giacomin, G., Lebowitz, J.L., Presutti, E.; Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. In: Stochastic Partial Differential Equations: Six Perspectives, Volume 64 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, pp. 107–152 (1999)

  65. Ginibre, J.: General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16, 310–328 (1970)

    Article  MathSciNet  Google Scholar 

  66. Ginibre, J.: Correlation inequalities in statistical mechanics, in Mathematical aspects of statistical mechanics (Proc. Sympos. Appl. Math., New York, 1971), 1972, pp. 27–45. SIAM–AMS Proceedings, Vol. V

  67. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I. Commun. Math. Phys. 66, 37–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. II. Commun. Math. Phys. 68, 45–68 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  69. Giorgetti, L., Carusotto, I., Castin, Y.: Semiclassical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions. Phys. Rev. A 76, 013613 (2007)

    Article  Google Scholar 

  70. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer, New York (1987)

    Book  MATH  Google Scholar 

  71. Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in the \(\mathscr {P}(\phi )_{2}\) quantum field model. Ann. Math. (2) 100, 585–632 (1974)

    Article  MathSciNet  Google Scholar 

  72. Golse, F.: On the dynamics of large particle systems in the mean field limit. ArXiv e-prints arXiv:1301.5494 (2013). Lecture notes for a course at the NDNS+ Applied Dynamical Systems Summer School “Macroscopic and large scale phenomena”. Universiteit Twente, Enschede (The Netherlands)

  73. Gottlieb, A.D.: Examples of bosonic de Finetti states over finite dimensional Hilbert spaces. J. Stat. Phys. 121, 497–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322, 559–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  75. Griffiths, R.B.: Correlations in Ising ferromagnets. I. J. Math. Phys. 8, 478–483 (1967)

    Article  Google Scholar 

  76. Grillakis, M.G., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294, 273–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. Grillakis, M.G., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting bosons. II. Adv. Math. 228, 1788–1815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. Guerra, F., Rosen, L., Simon, B.: The \(\mathbf{P}(\phi )_{2}\) Euclidean quantum field theory as classical statistical mechanics. I. Ann. Math. (2) 101, 111–189 (1975)

    Article  MathSciNet  Google Scholar 

  79. Guerra, F., Rosen, L., Simon, B.: The \(\mathbf{P}(\phi )_{2}\) Euclidean quantum field theory as classical statistical mechanics. II. Ann. Math. (2) 101, 191–259 (1975)

    Article  MathSciNet  Google Scholar 

  80. Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics, Universitext, 2nd edn. Springer, New York (2006)

    Google Scholar 

  81. Hainzl, C., Lewin, M., Solovej, J.P.: The mean-field approximation in quantum electrodynamics: the no-photon case. Commun. Pure Appl. Math. 60, 546–596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. Hainzl, C., Lewin, M., Solovej, J.P.: The thermodynamic limit of quantum Coulomb systems. Part II. Applications. Adv. Math. 221, 488–546 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. Hainzl, C., Seiringer, R.: General decomposition of radial functions on \(\mathbb{R}^n\) and applications to \(N\)-body quantum systems. Lett. Math. Phys. 61, 75–84 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  84. Hairer, M.: A theory of regularity structures. Invent. Math. 198, 269–504 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  85. Harrow, A.: The church of the symmetric subspace (2013)

  86. Hayashi, M.: Quantum Information. Springer, Berlin (2006). An introduction, Translated from the 2003 Japanese original

  87. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  Google Scholar 

  88. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16, 1782–1785 (1977)

    Article  MathSciNet  Google Scholar 

  89. Holzmann, M., Baym, G.: Condensate density and superfluid mass density of a dilute Bose–Einstein condensate near the condensation transition. Phys. Rev. Lett. 90, 040402 (2003)

    Article  Google Scholar 

  90. Holzmann, M., Chevallier, M., Krauth, W.: Universal correlations and coherence in quasi-two-dimensional trapped Bose gases. Europhys. Lett. 82, 30001 (2008)

    Article  Google Scholar 

  91. Holzmann, M., Krauth, W.: Kosterlitz–Thouless transition of the quasi-two-dimensional trapped Bose gas. Phys. Rev. Lett. 100, 190402 (2008)

    Article  Google Scholar 

  92. Hudson, R.L., Moody, G.R.: Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrscheinlichkeitstheor. und Verw. Gebiete 33, 343–351 (1975/1976)

  93. Kashurnikov, V.A., Prokof’ev, N.V., Svistunov, B.V.: Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett. 87, 120402 (2001)

    Article  Google Scholar 

  94. Ketterle, W.: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  Google Scholar 

  95. Knowles, A.: Limiting dynamics in large quantum systems. Doctoral thesis, ETH Zürich (2009)

  96. Kubo, R.: The fluctuation-dissipation theorem. Rep. Progress Phys. 29, 255–284 (1966)

    Article  MATH  Google Scholar 

  97. Kubo, R., Toda, M., Hashitsume, N.: Springer series in solid-state sciences. In: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer (1991)

  98. Kubo, R., Yokota, M., Nakajima, S.: Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance. J. Phys. Soc. Jpn. 12, 1203–1211 (1957)

    Article  MathSciNet  Google Scholar 

  99. Kupiainen, A.: Renormalization group and stochastic PDES. Ann. Henri Poincaré 17, 497–535 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  100. Lebowitz, J.L., Rose, H.A., Speer, E.R.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50, 657–687 (1988)

    Article  MATH  Google Scholar 

  101. Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  102. Lewin, M.: Mean-field limit of Bose systems: rigorous results. In: Proceedings of the International Congress of Mathematical Physics (2015)

  103. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  104. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. Éc. Polytech. Math. 2, 65–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  105. Lewin, M., Nam, P.T., Rougerie, N.: Remarks on the quantum de Finetti theorem for Bosonic systems. Appl. Math. Res. Express (AMRX) 2015, 48–63 (2015)

    MathSciNet  MATH  Google Scholar 

  106. Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc 368, 6131–6157 (2016)

    Article  MATH  Google Scholar 

  107. Lewin, M., Nam, P.T., Rougerie, N.: Classical field theory limit of 2D many-body quantum Gibbs states (2018). arXiv:1810.08370v2 (version 2)

  108. Lewin, M., Nam, P.T., Rougerie, N.: Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits. J. Math. Phys. 59, 041901 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  109. Lewin, M., Nam, P.T., Rougerie, N.: The interacting 2D Bose gas and nonlinear Gibbs measures. Oberwolfach Rep. 15, 1081–1116 (2018). Mini-workshop on “Gibbs measures for nonlinear dispersive equations” organized by Giuseppe Genovese, Benjamin Schlein and Vedran Sohinger

  110. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of renormalized Gibbs measures from equilibrium many-body quantum Bose gases. J. Math. Phys. 60, 061901 (2019) 11. Proceedings of the 2018 International Congress of Mathematical Physics at Montréal, Canada

  111. Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean-field regime. Am. J. Math. 137, 1613–1650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  112. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68, 413–471 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  113. Lieb, E.H.: The classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  114. Lieb, E.H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics, 2nd edition. American Mathematical Society, Providence (2001)

  115. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminars, Birkhäuser (2005)

    MATH  Google Scholar 

  116. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  Google Scholar 

  117. Lieb, E.H., Siedentop, H.: Renormalization of the regularized relativistic electron-positron field. Commun. Math. Phys. 213, 673–683 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  118. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  119. Mitrouskas, D., Petrat, S., Pickl, P.: Bogoliubov corrections and trace norm convergence for the Hartree dynamics. Rev. Math. Phys. 31, pp. 1950024, 36 (2019)

  120. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane. Ann. Probab. 45 (2015)

  121. Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic Ising–Kac model to \(\Phi ^4_2\). Commun. Pure Appl. Math. 70, 717–812 (2017)

    Article  MATH  Google Scholar 

  122. Mourrat, J.-C., Weber, H.: The dynamic \(\Phi ^4_3\) model comes down from infinity. Commun. Math. Phys. 356, 673–753 (2017)

    Article  MATH  Google Scholar 

  123. Nam, P.T., Napiórkowski, M.: Bogoliubov correction to the mean-field dynamics of interacting bosons. Adv. Theor. Math. Phys. 21, 683–738 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  124. Nam, P.T., Napiórkowski, M.: A note on the validity of Bogoliubov correction to mean-field dynamics. J. Math. Pures Appl. (9) 108, 662–688 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  125. Nam, P.T., Seiringer, R.: Collective excitations of Bose gases in the mean-field regime. Arch Rat. Mech Anal. 215, 381–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  126. Nelson, E.: A quartic interaction in two dimensions. In: Mathematical Theory of Elementary Particles. MIT Press, Cambridge, pp. 69–73 (1966)

  127. Nelson, E.: Construction of quantum fields from Markoff fields. J. Funct. Anal. 12, 97–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  128. Oh, T., Thomann, L.: A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear schrödinger equations. Stoch. PDE Anal. Comp. 6, 397–445 (2018)

    Article  MATH  Google Scholar 

  129. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Texts and Monographs in Physics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  130. Parisi, G., Wu, Y.S.: Perturbation theory without gauge fixing. Sci. Sin. 24, 483–496 (1981)

    MathSciNet  Google Scholar 

  131. Petz, D., Raggio, G.A., Verbeure, A.: Asymptotics of Varadhan-type and the Gibbs variational principle. Commun. Math. Phys. 121, 271–282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  132. Prokof’ev, N., Ruebenacker, O., Svistunov, B.: Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett. 87, 270402 (2001)

    Article  Google Scholar 

  133. Prokof’ev, N.V., Svistunov, B.V.: Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 66, 043608 (2002)

    Article  Google Scholar 

  134. Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989)

    MathSciNet  MATH  Google Scholar 

  135. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, Boca Raton (1972)

    MATH  Google Scholar 

  136. Röckner, M., Zhu, R., Zhu, X.: Ergodicity for the stochastic quantization problems on the 2D-torus. Commun. Math. Phys. 352, 1061–1090 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  137. Roepstorff, G.: Correlation inequalities in quantum statistical mechanics and their application in the Kondo problem. Commun. Math. Phys. 46, 253–262 (1976)

    Article  MathSciNet  Google Scholar 

  138. Rougerie, N.: De Finetti theorems, mean-field limits and Bose–Einstein condensation, (2015)

  139. Rougerie, N.: Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein, Spartacus-idh, Paris (2016). Cours Peccot au Collège de France (2014)

  140. Rougerie, N.: Non linear Schrödinger limit of bosonic ground states, again. Confluentes Mathematici Tome 12(1), 69–91 (2020)

  141. Rougerie, N.: Scaling limits of bosonic ground states (2020). arXiv:2002.02678

  142. Rougerie, N., Serfaty, S.: Higher dimensional coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69, 519–605 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  143. Ruelle, D.: Statistical Mechanics. Rigorous Results. World Scientific, Singapore. Imperial College Press, London (1999)

  144. Schlein, B: Derivation of effective evolution equations from microscopic quantum dynamics. Lecture Notes for the mini-course held at the 2008 CMI Summer School Evolution “Equations” at ETH Zurich (2008). arXiv:0807.4307

  145. Seiringer, R.: A correlation estimate for quantum many-body systems at positive temperature. Rev. Math. Phys. 18, 233–253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  146. Seiringer, R.: Free energy of a dilute Bose gas: lower bound. Commun. Math. Phys. 279, 595–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  147. Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  148. Seiringer, R., Ueltschi, D.: Rigorous upper bound on the critical temperature of dilute Bose gases. Phys. Rev. B 80, 014502 (2009)

    Article  Google Scholar 

  149. Simon, B.: The \(P(\phi )_{2}\) Euclidean (Quantum) Field Theory. Princeton Series in Physics. Princeton University Press, Princeton (1974)

    Google Scholar 

  150. Simon, B.: Trace ideals and their applications. London Mathematical Society Lecture Note Series, vol. 35. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  151. Simon, B.: The classical limit of quantum partition functions. Commun. Math. Phys. 71, 247–276 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  152. Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS Chelsea Publishing, Providence (2005)

    MATH  Google Scholar 

  153. Simon, B., Griffiths, R.B.: The \((\phi ^{4})_{2}\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)

    Article  MathSciNet  Google Scholar 

  154. Simula, T.P., Davis, M.J., Blakie, P.B.: Superfluidity of an interacting trapped quasi-two-dimensional Bose gas. Phys. Rev. A 77, 023618 (2008)

    Article  Google Scholar 

  155. Sohinger, V.: A microscopic derivation of Gibbs measures for nonlinear Schrödinger equations with unbounded interaction potentials (2019). arXiv:1904.08137

  156. Solovej, J.P.: Many body quantum mechanics. LMU (2007). Lecture notes

  157. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52, 569–615 (1980)

    Article  MathSciNet  Google Scholar 

  158. Størmer, E.: Symmetric states of infinite tensor products of \(C^{\ast } \)-algebras. J. Funct. Anal. 3, 48–68 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  159. Summers, S.J.: A perspective on constructive quantum field theory (2012)

  160. Symanzik, K.: Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys. 7, 510–525 (1966)

    Article  MathSciNet  Google Scholar 

  161. Thirring, W.E.: Quantum Mathematical Physics, Atoms. Molecules and Large Systems, 2nd edn. Springer, New York (2002)

    Google Scholar 

  162. Thomann, L., Tzvetkov, N.: Gibbs measure for the periodic derivative nonlinear Schrödinger equation. Nonlinearity 23, 2771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  163. Tsatsoulis, P., Weber, H.: Spectral gap for the stochastic quantization equation on the 2-dimensional torus. Ann. Inst. Henri Poincaré Probab. Stat. 54, 1204–1249 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  164. Tzvetkov, N.: Invariant measures for the defocusing nonlinear Schrödinger equation. Ann. Inst. Fourier (Grenoble) 58, 2543–2604 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  165. Verbeure, A.F.: Many-body boson systems. In: Theoretical and Mathematical Physics, Springer, London (2011). Half a century later

  166. Werner, R.F.: Large deviations and mean-field quantum systems. In: Quantum Probability & Related Topics, QP-PQ, VII, pp. 349–381. World Scientific Publishing, River Edge (1992)

  167. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)

    Article  MathSciNet  Google Scholar 

  168. Yin, J.: Free energies of dilute Bose gases: upper bound. J. Stat. Phys. 141, 683–726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  169. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  170. Zinn-Justin, J.: Phase Transitions and Renormalization Group. Oxford Graduate Texts. Oxford University Press, Oxford (2013). Paperback edition of the 2007 original [MR2345069]

Download references

Acknowledgements

Insightful discussions with Jürg Fröhlich, Markus Holzmann, Antti Knowles, Benjamin Schlein, Robert Seiringer, Vedran Sohinger, Jan Philip Solovej, Laurent Thomann, Daniel Ueltschi and Jakob Yngvason are gratefully acknowledged. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant agreements MDFT No 725528 and CORFRONMAT No 758620), and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC-2111-390814868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Rougerie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The counter-term problem

In this appendix we discuss the counter-term problem in detail.

1.1 A.1. Hartree versus reduced Hartree energy functional

We recall that to any one-body density matrix \(\gamma \geqslant 0\) one can associate a unique Gaussian state

$$\begin{aligned} \Gamma =\frac{e^{-\mathrm {d}\Gamma (a)}}{{{\,\mathrm{\mathrm{Tr}}\,}}_\mathfrak {F}[e^{-\mathrm {d}\Gamma (a)}]} \end{aligned}$$

on the Fock space which has the one-particle density matrix \(\Gamma ^{(1)}=\gamma \) [8, 156]. The unique corresponding one-body operator a is given by

$$\begin{aligned} \gamma =\frac{1}{e^a-1}\quad \Longleftrightarrow \quad a=\log \frac{1+\gamma }{\gamma }. \end{aligned}$$
(A.1)

Then its energy terms and entropy can be expressed as in (3.21), resulting the Hartree free energy

$$\begin{aligned} \mathcal {F}^\mathrm{H}[\gamma ]&:={{\,\mathrm{\mathrm{Tr}}\,}}\left[ (-\Delta +V-\nu )\gamma \right] +\frac{\lambda }{2} \iint \gamma (x;x) w(x-y) \gamma (y;y)\, dx\, dy\\&\quad + \frac{\lambda }{2} \iint w(x-y) |\gamma (x;y)|^2 dx dy\\&\quad -T{{\,\mathrm{\mathrm{Tr}}\,}}\left[ (1+\gamma )\log (1+\gamma )-\gamma \log \gamma \right] \end{aligned}$$

Thus if we are interested in equilibrium states minimizing the free energy, in the quasi-free class this leads to the following variational problem

$$\begin{aligned} F^\mathrm{H}_\lambda =\inf _{\gamma =\gamma ^*\geqslant 0}\mathcal {F}^\mathrm{H}[\gamma ]. \end{aligned}$$
(A.2)

When \(\widehat{w}\geqslant 0\), the functional \(\mathcal {F}^\mathrm{H}[\gamma ]\) turns out to be strictly convex. Hence, with the confining potential V it admits a unique minimizer \(\gamma ^\mathrm{H}\), that defines a unique corresponding quasi-free state in Fock space \(\Gamma ^\mathrm{H}\) (the proof is the same as that of Lemma 3.2). The optimal density matrix solves the nonlinear equation

$$\begin{aligned} \gamma ^\mathrm{H}=\left\{ \exp \left( \frac{-\Delta +V-\nu +\lambda \rho ^\mathrm{H}*w+\lambda X^\mathrm{H}}{T}\right) -1\right\} ^{-1} \end{aligned}$$

where \(\rho ^\mathrm{H}(x)=\gamma ^\mathrm{H}(x;x)\) is the density and \(X^\mathrm{H}\) is the exchange operator with integral kernel \(X^\mathrm{H}(x;y)=w(x-y)\gamma ^\mathrm{H}(x;y)\).

In the limit \(\lambda \rightarrow 0\) with \(T=1/\lambda \), the quasi-free state \(\Gamma ^\mathrm{H}\) is rather badly behaved. Its density \(\rho ^\mathrm{H}\) diverges very fast. However, it turns out that, although \(\rho ^\mathrm{H}(x)\) depends on x, its growth as \(\lambda \rightarrow 0\) is more or less uniform in x and can be captured by

$$\begin{aligned} \rho ^\mathrm{H}(x) \sim \varrho _0^{\kappa }(\lambda ) := \left[ \frac{1}{e^{\lambda (-\Delta +\kappa )}-1} \right] (x;x) = \frac{1}{(2\pi )^d\lambda ^{\frac{d}{2}}} \int _{k\in {\mathbb {R} }^d} \frac{dk}{e^{|k|^2+\lambda \kappa } -1} \end{aligned}$$
(A.3)

provided that

$$\begin{aligned} \nu =\lambda \widehat{w} (0) \varrho _0^\kappa -\kappa . \end{aligned}$$
(A.4)

Recall that \(\lambda \varrho _0^\kappa (\lambda )\) diverges in dimension \(d\geqslant 2\) but it does not depend on x by translation invariance of \(-\Delta + \kappa \). On the other hand, the exchange term \(\lambda X^\mathrm{H}\) typically stays bounded, for instance in the Hilbert-Schmidt norm.

This suggests to simplify things a little bit by removing the exchange term as we did in the paper, that is, to consider the simplified minimization problem associated with the reduced Hartree or, simply, mean-field free energy (3.22) which, we recall, is given by

$$\begin{aligned} \mathcal {F}^\mathrm{MF}[\gamma ]&:={{\,\mathrm{\mathrm{Tr}}\,}}\left[ (-\Delta +V-\nu )\gamma \right] +\frac{\lambda }{2} \iint \gamma (x;x) w(x-y) \gamma (y;y)\, dx\, dy\\&\quad -T{{\,\mathrm{\mathrm{Tr}}\,}}\left[ (1+\gamma )\log (1+\gamma )-\gamma \log \gamma \right] \end{aligned}$$

By doing so we will pick as reference state a quasi-free state which is not the absolute minimizer of the true quantum free energy in the quasi-free class. However, manipulating states depending only on a potential simplifies the analysis. Fortunately, it turns out to be sufficient for our purpose, as justified in Lemma 3.2, which we now prove.

1.2 A.2. Proof of Lemma 3.2

Under our assumptions, the first eigenvalue of the Friedrichs realization of \(h=-\Delta +V\) is positive. In addition, we have

$$\begin{aligned} {{\,\mathrm{\mathrm{Tr}}\,}}[e^{-h/T}]\leqslant (2\pi )^{-d}\int _{{\mathbb {R} }^d}e^{-p^2/T}\,dp\int _{{\mathbb {R} }^d}e^{-V(x)/T}\,dx<\infty , \end{aligned}$$

by the Golden–Thompson inequality, see [150, Section 8.1]. The same properties hold if we shift V by \(\nu \in {\mathbb {R} }\) and only keep the positive part. Then we obtain

$$\begin{aligned}&{{\,\mathrm{\mathrm{Tr}}\,}}\left( \left( -\Delta +(V-\nu )_+\right) \gamma \right) -T{{\,\mathrm{\mathrm{Tr}}\,}}\left( (1+\gamma )\log (1+\gamma )-\gamma \log \gamma \right) \nonumber \\&\quad \geqslant \frac{1}{2}{{\,\mathrm{\mathrm{Tr}}\,}}\left( -\Delta \gamma \right) + T{{\,\mathrm{\mathrm{Tr}}\,}}\left( \log \left( 1-e^{-\frac{-\Delta /2+(V-\nu )_+}{T}}\right) \right) \end{aligned}$$
(A.5)

for all \(\gamma \geqslant 0\). The last expression is the minimum free energy associated with \(-\Delta /2+(V-\nu )_+\).

In order to prove that the functional \(\mathcal {F}^\mathrm{MF}\) is bounded from below, it therefore remains to show that

$$\begin{aligned} -\int _{{\mathbb {R} }^d}\rho (x)(V-\nu )_-(x)\,dx+\frac{\lambda }{2} \int _{{\mathbb {R} }^d}\int _{{\mathbb {R} }^d}w(x-y)\rho (x)\rho (y)\,dx\,dy \end{aligned}$$

is bounded from below, uniformly in \(\rho \geqslant 0\), under the assumption that \(\widehat{w}\geqslant 0\) and \(w\not \equiv 0\) (if \(w\equiv 0\) then the Lemma holds true trivially). Since \(w\in L^1({\mathbb {R} }^d)\), we can find a \(k_0\in {\mathbb {R} }^d\) and a small radius \(r>0\) such that the continuous non-negative function \(\widehat{w}\) is at least equal to \(\widehat{w}(k_0)/2\) on \(B(k_0,r)\). We then choose \(\varphi \) in the Schwartz class such that \(\varphi >0\) and \(\widehat{\varphi }\geqslant 0\) with \(\mathrm{supp}(\widehat{\varphi })\subset B(k_0,r)\). Since \(V\geqslant 0\) and \(V\rightarrow +\infty \) at infinity, the function \((V-\nu )_-\) has compact support and is bounded by \(\nu _+\). Therefore, we have

$$\begin{aligned} (V-\nu )_-\leqslant C\varphi \end{aligned}$$

for \(C= \left| \left| \varphi ^{-1}(V-\nu )_- \right| \right| _{L^\infty ({\mathbb {R} }^d)}<\infty \). After completing the square and using \(\widehat{w}\geqslant 0\), we then deduce

$$\begin{aligned}&-\int _{{\mathbb {R} }^d}(V-\nu )_-\rho +\frac{\lambda }{2} \int _{{\mathbb {R} }^d}\int _{{\mathbb {R} }^d}w(x-y)\rho (x)\rho (y)\,dx\,dy\\&\quad \geqslant -C\int _{{\mathbb {R} }^d}\varphi \rho +\frac{\lambda }{2} \int _{{\mathbb {R} }^d}\int _{{\mathbb {R} }^d}w(x-y)\rho (x)\rho (y)\,dx\,dy \\&\quad \geqslant -\frac{C^2}{2\lambda } \int _{{\mathbb {R} }^d}\frac{|\widehat{\varphi }(k)|^2}{\widehat{w}(k)}\,dk\\&\quad \geqslant -\frac{C^2\Vert \widehat{\varphi }\Vert ^2_{L^2}}{\lambda \widehat{w}(k_0)}. \end{aligned}$$

Combining with (A.5) we find as stated that

$$\begin{aligned} \inf _{\gamma =\gamma ^*\geqslant 0}\mathcal {F}^\mathrm{MF}[\gamma ]>-\infty , \end{aligned}$$

for all \(\nu \in {\mathbb {R} }\).

Let us now prove the existence of a minimizer. Writing

$$\begin{aligned} \mathcal {F}^\mathrm{MF}_\nu [\gamma ]=\mathcal {F}^\mathrm{MF}_{\nu +1}[\gamma ]+{{\,\mathrm{\mathrm{Tr}}\,}}\gamma \geqslant \inf _{\gamma '} \mathcal {F}^\mathrm{MF}_{\nu +1}[\gamma ']+{{\,\mathrm{\mathrm{Tr}}\,}}(\gamma ), \end{aligned}$$

where we have displayed the parameter \(\nu \) for convenience, we obtain that minimizing sequences \(\{\gamma _n\}\) for \(\mathcal {F}^\mathrm{MF}_\nu \) are necessarily bounded in the trace-class. In particular, \(\Vert \gamma _n\Vert \) is also bounded. In addition, the inequality (A.5) implies that \({{\,\mathrm{\mathrm{Tr}}\,}}(-\Delta )\gamma _n\) is bounded. From the Hoffmann-Ostenhof inequality [88]

$$\begin{aligned} {{\,\mathrm{\mathrm{Tr}}\,}}(-\Delta )\gamma \geqslant \int _{{\mathbb {R} }^d}\left| \nabla \sqrt{\rho _\gamma (x)}\right| ^2\,dx \end{aligned}$$

and the Sobolev inequality, we deduce that \(\rho _{\gamma _n}\) is bounded in \(L^{p^*/2}({\mathbb {R} }^d)\) where \(p^*=+\infty \) in dimension \(d=1\), \(p^*<\infty \) arbitrarily in dimension \(d=2\) and \(p^*=2d/(d-2)\) in dimensions \(d\geqslant 3\). Hence, up to extraction of a subsequence, we have \(\gamma _n\rightharpoonup \gamma \) weakly-\(*\) in \(\mathfrak {S}^1\) and \(\rho _{\gamma _n}\rightharpoonup \rho _{\gamma }\) weakly in \(L^1({\mathbb {R} }^d)\cap L^{p^*/2}({\mathbb {R} }^d)\). Using Fatou’s lemma and the concavity (hence weak upper semi-continuity) of the entropy, we obtain that \(\gamma \) is a minimizer for \(\mathcal {F}_\nu ^\mathrm{MF}\). The nonlinear equation (3.24) follows from classical arguments. Then, according to (A.1), \(V_\lambda \) must solve (3.20) because the minimizer \(\gamma ^\mathrm{MF}\) is the one-body density matrix of the quasi-free state associated with \(\mathrm {d}\Gamma (-\Delta + V_\lambda )\). \(\square \)

1.3 A.3. Comments on Theorem 3.3

Let us briefly discuss Theorem 3.3. In [60, Section 5], the existence of the solution \(V_\lambda \) to (3.20) was established by means of a fixed-point argument (which requires that \(d\leqslant 3\) and that \(\kappa \) is sufficiently large). The fixed point is performed in the (complete) metric space

$$\begin{aligned} B(V)=\left\{ f \in L^\infty _\mathrm{loc} ({\mathbb {R} }^d): \Vert f\Vert _{B(V)}= \left\| \frac{f}{V} - 1 \right\| _{L^\infty } \leqslant 1/2 \right\} \end{aligned}$$

for the unknown \(u=V_\lambda -\kappa \) and provides the Hilbert-Schmidt convergence

$$\begin{aligned} {{\,\mathrm{\mathrm{Tr}}\,}}\Big | (-\Delta +V_\lambda )^{-1} -(-\Delta +V_0)^{-1} \Big |^2 \rightarrow 0. \end{aligned}$$

Our notation here is slightly different from [60] as we shift potentials by a constant. Moreover, since \(V_\lambda -\kappa \in B(V)\) we have

$$\begin{aligned} \frac{V}{2} \leqslant V_\lambda -\kappa \leqslant 3\frac{V}{2}. \end{aligned}$$

There remains to discuss the nonlinear equation (3.28) for \(V_0\), which we can rewrite in the form

$$\begin{aligned} V_0=w*\left( V+\kappa +\rho \left[ \big (-\Delta +V_0\big )^{-1}-\big (-\Delta +\kappa \big )^{-1}\right] \right) . \end{aligned}$$
(A.6)

Here we just need to pass to the limit in the similar equation at \(\lambda >0\)

$$\begin{aligned} V_\lambda =w*\left( V+\kappa +\rho \left[ \frac{\lambda }{ e^{\lambda (-\Delta +V_\lambda )}-1}-\frac{\lambda }{ e^{\lambda (-\Delta +\kappa )}-1}\right] \right) . \end{aligned}$$

Since we know that \(V_\lambda /V\rightarrow V_0/V\) in \(L^\infty \), we have \(V_\lambda \rightarrow V_0\) in \(L^\infty _\mathrm{loc}\) and it suffices to prove the convergence of the density on the right side, which we denote for simplicity

$$\begin{aligned} \rho _\lambda ^{V_\lambda }(x):=\left[ \frac{\lambda }{ e^{\lambda (-\Delta +V_\lambda )}-1}-\frac{\lambda }{e^{\lambda (-\Delta +\kappa )}-1}\right] (x;x). \end{aligned}$$

In [60, Eq. (5.21)] it is shown that

$$\begin{aligned} |\rho _\lambda ^{V_\lambda }(x)|\leqslant C\kappa ^{d/2-2} \left| \left| \frac{V_\lambda - \kappa }{V} \right| \right| _{L^\infty } V(x). \end{aligned}$$
(A.7)

Hence from the dominated convergence theorem and the assumptions on w, it suffices to prove that

$$\begin{aligned} \rho _\lambda ^{V_\lambda }(x)\rightarrow \left( \big (-\Delta +V_0\big )^{-1}-\big (-\Delta +\kappa \big )^{-1}\right) (x;x) \end{aligned}$$

almost everywhere. Applying again [60, Eq. (5.21)] we find that

$$\begin{aligned} \left| \left( \frac{\lambda }{e^{\lambda (-\Delta +V_\lambda )}-1}-\frac{\lambda }{ e^{\lambda (-\Delta +V_0)}-1}\right) (x;x)\right| \leqslant C\kappa ^{d/2-2} \left| \left| \frac{V_\lambda -V_0}{V} \right| \right| _{L^\infty } V(x) \end{aligned}$$

which tends to 0 in \(L^\infty _\mathrm{loc}\) since \((V_\lambda -V_0)/V\rightarrow 0\). Hence we can replace \(V_\lambda \) by \(V_0\) throughout. Next we write, following [60, Eq. (5.16)],

$$\begin{aligned} \rho _\lambda ^{V_0}(x)=-\int _0^1\mathrm{d}s\int _{{\mathbb {R} }^d}\mathrm{d}z\frac{\lambda \,e^{s\lambda (-\Delta +V_0)}}{e^{\lambda (-\Delta +V_0)}-1}(x;z)V_0(z)\frac{\lambda \,e^{(1-s)\lambda (-\Delta +\kappa )}}{e^{\lambda (-\Delta +\kappa )}-1}(z;x). \end{aligned}$$

Using that \(V_0\geqslant \kappa \), we have the pointwise bound on the operator kernels

$$\begin{aligned} 0\leqslant \frac{e^{s\lambda (-\Delta +V_0)}}{e^{\lambda (-\Delta +V_0)}-1}(x;z)\leqslant \frac{e^{s\lambda (-\Delta +\kappa )}}{e^{\lambda (-\Delta +\kappa )}-1}(x;z) \end{aligned}$$

by the same argument as in Lemma 11.2 and in [60, Eq. (5.17)]. Using [60, Lemma 5.4] we see that we get a convergent domination. So by the dominated convergence theorem, the strong local convergence of \(\rho ^{V_0}_\lambda \) follows from that of the kernels

$$\begin{aligned} \frac{\lambda \, e^{\lambda (-\Delta +V_0)}}{e^{\lambda (-\Delta +V_0)}-1}(x;z)\rightarrow \frac{1}{-\Delta +V_0}(x;z), \end{aligned}$$
$$\begin{aligned} \frac{\lambda \,e^{s\lambda (-\Delta +\kappa )}}{e^{\lambda (-\Delta +\kappa )}-1}(x;z)\rightarrow \frac{1}{-\Delta +\kappa }(x;z). \end{aligned}$$

In fact this convergence is strong in \(L^2({\mathbb {R} }^d\times {\mathbb {R} }^d)\) since the corresponding operators converge in the Hilbert-Schmidt norm, by [60, Lemma C.1]. Passing to the limit, this proves the strong local convergence

$$\begin{aligned}&\rho ^{V_0}_\lambda (x)\underset{\lambda \rightarrow 0^+}{\longrightarrow } -\int _0^1\mathrm{d}s\int _{{\mathbb {R} }^d}\mathrm{d}z\frac{1}{-\Delta +V_0}(x;z)V_0(z)\frac{1}{-\Delta +\kappa }(z;x)\\&\quad =\left( \big (-\Delta +V_0\big )^{-1}-\big (-\Delta +\kappa \big )^{-1}\right) (x;x), \end{aligned}$$

where in the last equality we have used the resolvent formula. The uniform bound (A.7) then allows to pass to the limit in the equation for \(V_\lambda \) and obtain (A.6). \(\square \)

Appendix B: Interpretation in terms of the phase transition of the Bose gas

Here we reformulate and discuss our main results (Theorems 3.1 and 3.4) in microscopic variables and clarify the link with the phase transition of the infinite Bose gas.

1.1 B.1. Homogeneous case

We start with the homogeneous case which is the usual setting in which the thermodynamics of the free Bose gas is formulated, see for instance [30, Section 5.2.5], [161, Sections 2.5.19–20] and [165, Chapter 4].

Let us consider the non-interacting Bose gas on the large torus \(L\mathbb {T}^d\) of side length L. In the grand canonical setting we choose a chemical potential \(\widetilde{\nu }<0\) and a temperature \(T>0\). Our system is then represented by the Gaussian quantum state in Fock space, associated with the one-particle operator \((-\Delta _L-\widetilde{\nu })/T\) where \(-\Delta _L\) is the L-periodic Laplacian. Its one-body density matrix isFootnote 3

$$\begin{aligned} \widetilde{\Gamma }^{(1)}_L=\frac{1}{e^{\frac{-\Delta _L-\widetilde{\nu }}{T}}-1} \end{aligned}$$

and the number of particles per unit volume is given by

$$\begin{aligned} \frac{1}{L^d}\sum _{k\in 2\pi {\mathbb {Z} }^d/L}\frac{1}{e^{\frac{|k|^2-\widetilde{\nu }}{T}}-1}\underset{L\rightarrow \infty }{\longrightarrow }\frac{T^{\frac{d}{2}}}{(2\pi )^d}\int _{{\mathbb {R} }^d}\frac{dk}{e^{k^2-\widetilde{\nu }/T}-1}. \end{aligned}$$

The critical density for Bose–Einstein condensation is obtained in the limit \(\widetilde{\nu }/T\rightarrow 0^-\) and it equals

$$\begin{aligned} \rho _c(T)=\frac{T^{\frac{d}{2}}}{(2\pi )^d} \int _{{\mathbb {R} }^d}\frac{dk}{e^{k^2}-1} ={\left\{ \begin{array}{ll} +\infty &{}\quad \text {for } d=1,2,\\ \frac{T^{\frac{d}{2}}\zeta \left( \frac{d}{2}\right) }{2^d\pi ^{\frac{d}{2}}}<\infty &{}\quad \text {for } d\geqslant 3. \end{array}\right. } \end{aligned}$$
(B.1)

The grand-canonical model in infinite space stops to exist at \(\widetilde{\nu }=0\), where the one-body density matrix converges weakly to

$$\begin{aligned} \widetilde{\Gamma }_\infty ^{(1)}=\frac{1}{e^{\frac{-\Delta }{T}}-1}. \end{aligned}$$
(B.2)

The corresponding infinite Gaussian state (properly defined over the \(C^*\)-algebra of Canonical Commutation Relations [30]) has the number of particles per unit volume equal to \(\rho _c(T)\).

The phenomenon of Bose–Einstein Condensation (BEC) is better understood in the canonical setting with N particles, going back to the thermodynamic limit. In dimensions \(d\geqslant 3\), fixing the density \(N/L^d=\rho >\rho _c(T)\) one obtains a density matrix which has a two-scale behavior [30, Sec. 5.2.5]. It contains a rank-one part with the diverging eigenvalue \(L^d(\rho -\rho _c(T))\) and constant eigenfunction \(f_0(x)=L^{-d/2}\), living at the macroscopic scale (the Bose–Einstein condensate). When this rank-one operator is removed, the rest of the density matrix converges weakly to \(\widetilde{\Gamma }_\infty ^{(1)}\) in (B.2).

To understand the behavior of the system just before the phase transition, we have to look at the simultaneous limit \(L\rightarrow \infty \) with \(\widetilde{\nu }\rightarrow 0^-\), see [161, Sec. 2.5.20.3]. At the macroscopic scale (that is, after rescaling length by L), the (rescaled) one-particle density matrix equals

$$\begin{aligned} \Gamma ^{(1)}_L=\frac{1}{e^{\frac{-\Delta -L^2\widetilde{\nu }}{L^2T}}-1}\quad \text {in } L^2(\mathbb {T}^d) \end{aligned}$$

and thus we see that the natural scaling for \(\widetilde{\nu }\) is

$$\begin{aligned} \widetilde{\nu }(L)=-\frac{\kappa }{L^2} \end{aligned}$$
(B.3)

with a fixed \(\kappa >0\), in all dimensions \(d\geqslant 1\). We are therefore exactly in the setting studied in this paper and in [104] with the choice

$$\begin{aligned} \boxed {\lambda =\frac{1}{TL^2}\underset{L\rightarrow \infty }{\longrightarrow }0^+.} \end{aligned}$$

The density matrix converges to

$$\begin{aligned} \frac{\Gamma _L^{(1)}}{TL^2}\underset{L\rightarrow \infty }{\longrightarrow }\frac{1}{-\Delta +\kappa }=\int |u\rangle \langle u|\,d\mu _\kappa (u) \end{aligned}$$
(B.4)

strongly in the Schatten space \(\mathfrak {S}^p(L^2(\mathbb {T}^d))\) for all \(p>d/2\) (\(p\geqslant 1\) if \(d=1\)), where \(\mu _\kappa \) is the classical Gaussian measure with covariance \((-\Delta +\kappa )^{-1}\). Equivalently,

$$\begin{aligned} \frac{\Gamma _L^{(1)}}{L^2}\underset{L\rightarrow \infty }{\longrightarrow }\frac{T}{-\Delta +\kappa }=\int |u\rangle \langle u|\,d\mu _{\kappa ,T}(u) \end{aligned}$$

where \(\mu _{\kappa ,T}\) is the Gaussian measure with covariance \(T(-\Delta +\kappa )^{-1}\). Similar properties hold for higher density matrices.

Our conclusion is that, close to its phase transition, the free Bose gas is properly described by the classical Gaussian measure \(\mu _{\kappa ,T}\) on \(\mathbb {T}^d\) (macroscopic scale) where \(\kappa \) describes the speed at which the chemical potential \(\widetilde{\nu }\) approaches 0 via (B.3) or, equivalently, at which the corresponding density approaches the critical density \(\rho _c(T)\). This elementary fact is rarely mentioned in textbooks on Bose gases.

The speed at which the density approaches \(\rho _c(T)\) is computed by using the following

Lemma B.1

(Particle number of the free Bose gas) In dimensions \(d\geqslant 1\), we have for every fixed \(\kappa >0\)

$$\begin{aligned} \sum _{k\in 2\pi {\mathbb {Z} }^d}\frac{1}{e^{\lambda (|k|^2+\kappa )}-1}=\frac{\lambda ^{-\frac{d}{2}}}{(2\pi )^d}\int _{{\mathbb {R} }^d}\frac{dk}{e^{k^2+\lambda \kappa }-1}+\frac{\varphi _d(\kappa )}{\lambda }+ o\left( \lambda ^{-1}\right) _{\lambda \rightarrow 0^+} \end{aligned}$$
(B.5)

with the positive decreasing function

$$\begin{aligned} \varphi _d(\kappa )=\sum _{\ell \in {\mathbb {Z} }^d{\setminus }\{0\}}\int _0^\infty \frac{e^{-t\kappa }}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|\ell |^2}{4t}}\,dt ={\left\{ \begin{array}{ll} \displaystyle \frac{1}{2}\sum _{\ell \in {\mathbb {Z} }{\setminus }\{0\}} e^{-\kappa |\ell |}&{}\quad \text {for } d=1,\\ \displaystyle \frac{1}{4\pi }\sum _{\ell \in {\mathbb {Z} }^3{\setminus }\{0\}}\frac{e^{-\sqrt{\kappa }|\ell |}}{|\ell |}&{}\quad \text {for } d=3. \end{array}\right. } \end{aligned}$$
(B.6)

The proof is provided below in “Appendix B.3”. The integral in the first equality of (B.6) is the Fourier transform of \((2\pi )^{-d/2}(|k|^2+\kappa )^{-1}\), that is, the Klein-Gordon Green function. In dimensions \(d\leqslant 3\), we can also write by Poisson’s formula

$$\begin{aligned} \varphi _d(\kappa )=\sum _{k\in 2\pi {\mathbb {Z} }^d}\left( \frac{1}{|k|^2+\kappa }-\frac{1}{(2\pi )^d}\int _{(-\pi ,\pi )^d}\frac{dp}{|k+p|^2+\kappa }\right) \end{aligned}$$

but the sum is not absolutely convergent in dimensions \(d\geqslant 4\). Since we have the expansions

$$\begin{aligned} \frac{1}{(2\pi )^d}\int _{{\mathbb {R} }^d}\frac{dk}{e^{|k|^2+a}-1}&={\left\{ \begin{array}{ll} \frac{1}{2\sqrt{a}}+\frac{\zeta (\frac{1}{2})}{2\sqrt{\pi }}+o(1)_{a\rightarrow 0^+}&{}\quad \text {for } d=1,\\ \frac{-\log (a)}{4\pi }+\frac{a}{8\pi }+o(a)_{a\rightarrow 0^+}&{}\quad \text {for } d=2, \end{array}\right. }\nonumber \\&=\frac{\zeta \left( \frac{d}{2}\right) }{2^d\pi ^{\frac{d}{2}}}-{\left\{ \begin{array}{ll} \frac{\sqrt{a}}{4\pi }+O(a)_{a\rightarrow 0^+}&{}\quad \text {for } d=3,\\ \frac{(\log (1/a)+1)a}{16\pi ^2}+o(a)_{a\rightarrow 0^+}&{}\quad \text {for } d=4,\\ \frac{\zeta \left( \frac{d}{2}-1\right) }{2^d\pi ^{\frac{d}{2}}}a+o(a)_{a\rightarrow 0^+}&{}\quad \text {for } d\geqslant 5. \end{array}\right. } \end{aligned}$$
(B.7)

we find from (B.5) that the density approaches the critical density \(\rho _c(T)\) from below as

$$\begin{aligned}&\frac{{{\,\mathrm{\mathrm{Tr}}\,}}[\Gamma ^{(1)}_L]}{L^d} ={\left\{ \begin{array}{ll} \left( \frac{1}{2\sqrt{\kappa }}+\varphi _1(\kappa )\right) TL+o(L)&{}\quad \text {for } d=1,\\ \frac{T}{2\pi }\log (L)+\left( \varphi _2(\kappa )-\frac{\log (\kappa /T)}{4\pi }\right) T+o(1)&{}\quad \text {for } d=2, \end{array}\right. }\nonumber \\&\quad =\frac{T^{\frac{d}{2}}\zeta \left( \frac{d}{2}\right) }{2^d\pi ^{\frac{d}{2}}}-{\left\{ \begin{array}{ll} \left( \frac{\sqrt{\kappa }}{4\pi }-\varphi _3(\kappa )\right) \frac{T}{L}+o(L^{-1})&{}\quad \text {for } d=3,\\ \frac{\kappa T}{8\pi ^2}\frac{\log L}{L^2}+\left( \frac{1+\log \frac{T}{\kappa }}{16\pi ^2}\kappa -\varphi _4(\kappa )\right) \frac{T}{L^2}+o(L^{-2})&{}\quad \text {for } d=4,\\ \frac{\zeta \left( \frac{d}{2}-1\right) }{2^d\pi ^{\frac{d}{2}}}\frac{T^{\frac{d}{2}-1}\kappa }{L^2}+o(L^{-2})&{}\quad \text {for } d\geqslant 5. \end{array}\right. } \end{aligned}$$
(B.8)

Note that \(\varphi _3(\kappa )\leqslant \sqrt{\kappa }/(4\pi )\) which is its behavior when \(\kappa \rightarrow 0^+\).

So far our discussion applies to any dimension \(d\geqslant 1\). Next we discuss the inclusion of interactions for \(d\leqslant 3\). In our work the potential w is introduced at the macroscopic level. Re-expressed in microscopic variables and taking \(T=1\) for simplicity, we obtain the microscopic n-particle Hamiltonian

$$\begin{aligned} \widetilde{H}_{n,L}=\sum _{j=1}^n(-\Delta _L-\widetilde{\nu })_{x_j}+\frac{1}{L^4}\sum _{1\leqslant j<k\leqslant n}w\left( \frac{x_j-x_k}{L}\right) . \end{aligned}$$
(B.9)

The interaction has the very small intensity \(L^{-4}\) but varies on length scales comparable with the size of the box. The form of the microscopic Hamiltonian (B.9) is the same in all dimensions. The thermodynamic limit \(L\rightarrow \infty \) of this model at fixed \(\widetilde{\nu }<0\) is the same as the non-interacting case. This is because we have the lower bound

$$\begin{aligned} \widetilde{H}_{n,L}\geqslant \sum _{j=1}^n-(\Delta _L)_{x_j}-\left( \widetilde{\nu }+\frac{w(0)}{2L^4}\right) n \end{aligned}$$

due to the fact that \(\widehat{w}\geqslant 0\) (for an upper bound on the free energy, use the non-interacting state). We conclude that w does not, to leading order, change the phase diagram as compared to the non-interacting case. The effect of w is only visible when zooming just before the phase transition. From Theorem 3.1, when the chemical potential goes to zero as

$$\begin{aligned} \widetilde{\nu }(L)=\frac{\nu (L^{-2})}{L^2}={\left\{ \begin{array}{ll} \displaystyle \frac{\widehat{w} (0)\,\log (L)}{2\pi L^2} -\frac{\nu _0}{L^2}+o(1)_{\lambda \rightarrow 0^+}&{}\quad \text {for } d=2,\\ \displaystyle \frac{\widehat{w} (0)\zeta \left( \frac{3}{2}\right) }{8\pi ^{\frac{3}{2}}L}-\frac{\nu _0}{L^2}+o(1)_{\lambda \rightarrow 0^+}&{}\quad \text {for } d=3, \end{array}\right. } \end{aligned}$$

then the behavior close to the transition is described by the nonlinear Gibbs measure \(\mu \) at the macroscopic scale, which depends on w and \(\kappa \) solving

$$\begin{aligned} \nu _0={\left\{ \begin{array}{ll} \kappa +\widehat{w}(0)\frac{\log (\kappa )}{4\pi }-\widehat{w}(0)\,\varphi _2(\kappa )&{}\quad \text {for } d=2,\\ \kappa +\widehat{w}(0)\frac{\sqrt{\kappa }}{4\pi }-\widehat{w}(0)\,\varphi _3(\kappa )&{}\quad \text {for } d=3, \end{array}\right. } \end{aligned}$$
(B.10)

More physical interactions are much bigger and have a much shorter range. Although a universal behavior can still be expected at the phase transition, the phase diagram depends on w at leading order and a mathematical treatment seems out of reach with the present techniques. A simpler behavior is however expected in the dilute regime \(\rho \rightarrow 0\) with \(\rho \sim T^{d/2}\) (Gross-Pitaevskii regime [48]). In dimension \(d=3\) and at our macroscopic scale, the Gross-Pitaevskii limit corresponds to replacing \(\lambda w\) by \(\lambda w_\lambda \) with \(w_\lambda (x)=\lambda ^{-3} w(x/\lambda )\) in our many-particle Hamiltonian. In this case one would expect the phase transition to be described by the (appropriately renormalized) nonlinear Gibbs measure \(\mu \) over the torus \(\mathbb {T}^3\), with w replaced by the Dirac delta \(8\pi a \delta _0\) where a is the scattering length of w [48, 115, 116]. Proving such a result seems a formidable task.

1.2 B.2. Trapped gases

The theory of Bose–Einstein condensation for trapped gases is analogous to the homogeneous case, but the formulas are slightly different, see for instance [9, 161, Sec. 2.5.15] and [49]. Here we only discuss the case \(V(x)=|x|^s\) for simplicity. At the microscopic scale the one-body Hamiltonian takes the form

$$\begin{aligned} \widetilde{h}_L:=-\Delta +\frac{|x|^s}{L^{2+s}}-\widetilde{\nu } \end{aligned}$$

where L is now a parameter used to open the trap whenever the number of particles grows. At fixed \(\widetilde{\nu }<0\), the number of particles in the non-interacting Gaussian state is given by

$$\begin{aligned}&{{\,\mathrm{\mathrm{Tr}}\,}}\left( \frac{1}{e^{T^{-1}(-\Delta +L^{-2-s}|x|^s-\widetilde{\nu })}-1}\right) \nonumber \\&\quad ={{\,\mathrm{\mathrm{Tr}}\,}}\left( \frac{1}{e^{-T^{-1}\left( L^{-\frac{4+2s}{s}}\Delta +|x|^s-\widetilde{\nu }\right) }-1}\right) \nonumber \\&\quad \underset{L\rightarrow \infty }{\sim } \frac{(L^2T)^{d\left( \frac{1}{2}+\frac{1}{s}\right) }}{(2\pi )^d}\iint _{{\mathbb {R} }^d\times {\mathbb {R} }^d}\frac{dx\,dk}{e^{|k|^2+|x|^s-\widetilde{\nu }/T}-1}. \end{aligned}$$
(B.11)

In the first equality we have rescaled lengths by the factor \(L^{(2+s)/s}\), which places the system in a conventional semi-classical limit with effective parameter \(\hbar =L^{-(2+s)/s}\rightarrow 0\), hence the second limit. Computing in the same manner the average against |x| one sees that the gas is extended at the length scale

$$\begin{aligned} \ell _\mathrm{gas}\sim (L^2T)^{\left( \frac{1}{2}+\frac{1}{s}\right) }T^{-\frac{1}{2}}. \end{aligned}$$
(B.12)

Dividing by the effective volume \((\ell _\mathrm{gas})^d\), the density obtained in the thermodynamic limit is therefore proportional to

$$\begin{aligned} \frac{T^{\frac{d}{2}}}{(2\pi )^d}\iint _{{\mathbb {R} }^d\times {\mathbb {R} }^d}\frac{dx\,dk}{e^{|k|^2+|x|^s-\widetilde{\nu }/T}-1}. \end{aligned}$$

Bose–Einstein condensation is obtained as before when \(\widetilde{\nu }/T\rightarrow 0^-\), with the critical density

$$\begin{aligned} \rho '_c(T)=\frac{T^{\frac{d}{2}}}{(2\pi )^d}\iint _{{\mathbb {R} }^d\times {\mathbb {R} }^d}\frac{dx\,dk}{e^{|k|^2+|x|^s}-1}. \end{aligned}$$

This is finite for all \(s>0\) in dimensions \(d\geqslant 2\). In dimension \(d=1\), \(\rho '_c(T)\) is finite for \(s<2\) and infinite otherwise.

As before the Bose–Einstein condensate emerges in the limit \(L\rightarrow \infty \) in the canonical setting, when \(N>\rho '_c(T)(\ell _\mathrm{gas})^d\). The corresponding condensate wavefunction is the first eigenfunction of \(-\Delta +L^{-2-s}|x|^s\). This is nothing but that of \(-\Delta +|x|^s\) dilated to the scale L. Therefore, in this system the BEC length scale is L and it is always smaller than the natural extension length \(\ell _\mathrm{gas}\) of the cloud in (B.12), at a fixed temperature \(T>0\). The two coincide only in a sharp container (\(s=+\infty \)).

The Gaussian Gibbs measure based on \(h=-\Delta +|x|^s\) emerges at the BEC length scale L, whenever the chemical potential is chosen as

$$\begin{aligned} \widetilde{\nu }(L)=-\frac{\kappa }{L^2}. \end{aligned}$$

At this scale the one-particle Hamiltonian just becomes \((-\Delta +|x|^s+\kappa )/L^2\) so that \(\lambda =1/(TL^2)\) like in the homogeneous case. The arguments from [60] and “Appendix A.3” in the non-interacting case give

$$\begin{aligned}&\rho \left[ \frac{1}{e^{\frac{-\Delta +|x|^s+\kappa }{TL^2}}-1}\right] (x)=\frac{T^{\frac{d}{2}}L^d}{(2\pi )^d}\int _{{\mathbb {R} }^d}\frac{dk}{e^{|k|^2+\frac{\kappa }{TL^2}}-1}\nonumber \\&\quad +TL^2\;\rho \left[ \frac{1}{-\Delta +|x|^s+\kappa }-\frac{1}{-\Delta +\kappa }\right] (x)+o(TL^2)_{L\rightarrow \infty } \end{aligned}$$
(B.13)

for every \(x\in {\mathbb {R} }^d\). Here the density on the second line plays the role of \(\varphi _d\) in the homogeneous case. In particular we obtain all the same formulas as in (B.8) with \(\varphi _d(\kappa )\) replaced by

$$\begin{aligned} \varphi _d'(\kappa ):={{\,\mathrm{\mathrm{Tr}}\,}}\left[ \frac{1}{-\Delta +|x|^s+\kappa }-\frac{1}{-\Delta +\kappa }\right] . \end{aligned}$$

In the inhomogeneous case, interactions were introduced at the scale L of the BEC and the interpretation is the same as in the homogeneous case.

1.3 B.3. Proof of Lemma B.1

We write

$$\begin{aligned} \frac{\lambda }{e^{\lambda h}-1}=\lambda \sum _{n\geqslant 1}e^{-n\lambda h} \end{aligned}$$

and obtain

$$\begin{aligned}&\lambda \left( \sum _{k\in 2\pi {\mathbb {Z} }^d}\frac{1}{e^{\lambda (|k|^2+\kappa )}-1}-\frac{1}{(2\pi )^d}\int _{{\mathbb {R} }^d}\frac{dp}{e^{\lambda (|p|^2+\kappa )}-1}\right) \\&\quad =\lambda \sum _{n\geqslant 1}e^{-n\lambda \kappa }\sum _{k\in 2\pi {\mathbb {Z} }^d}\left( e^{-n\lambda |k|^2}-\frac{1}{(2\pi )^d}\int _{(-\pi ,\pi )^d}e^{-n\lambda |k-p|^2}\,dp\right) . \end{aligned}$$

We use Poisson’s formula

$$\begin{aligned} \sum _{k\in 2\pi {\mathbb {Z} }^d}\widehat{f}(k)=\frac{1}{(2\pi )^{\frac{d}{2}}}\sum _{\ell \in {\mathbb {Z} }^d}f(\ell ) \end{aligned}$$

for \(f(x)=e^{-n\lambda |x|^2}-e^{-n\lambda |\cdot |^2}*\chi (x)\) where \(\chi =(2\pi )^{-d}{\mathbb {1} }_{(-\pi ,\pi )^d}\) and find

$$\begin{aligned}&\lambda \left( \sum _{k\in 2\pi {\mathbb {Z} }^d}\frac{1}{e^{\lambda (|k|^2+\kappa )}-1}-\frac{1}{(2\pi )^d}\int _{{\mathbb {R} }^d}\frac{dp}{e^{\lambda (|p|^2+\kappa )}-1}\right) \\&\quad =\frac{\lambda }{(4\pi )^{\frac{d}{2}}}\sum _{n\geqslant 1}\frac{e^{-n\lambda \kappa }}{(4\pi n\lambda )^{\frac{d}{2}}}\sum _{\ell \in {\mathbb {Z} }^d{\setminus }\{0\}} e^{-\frac{|\ell |^2}{4n\lambda }}. \end{aligned}$$

This is a Riemann sum which converges to

$$\begin{aligned} \sum _{\ell \in {\mathbb {Z} }^d{\setminus }\{0\}}\int _0^\infty \frac{e^{-t\kappa }}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|\ell |^2}{4t}}\,dt \end{aligned}$$

where the right side is the Fourier transform of \(k\mapsto (2\pi )^{-d/2}(|k|^2+\kappa )^{-1}\), see [114]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewin, M., Nam, P.T. & Rougerie, N. Classical field theory limit of many-body quantum Gibbs states in 2D and 3D. Invent. math. 224, 315–444 (2021). https://doi.org/10.1007/s00222-020-01010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-020-01010-4

Navigation