Skip to main content
Log in

Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

Probiotics (Bacillus subtilis 04178) were entrapped in alginate-chitosan microcapsules by high-voltage electrostatic process. The encapsulation pattern was established as entrapped low density cells with culture (ELDCwc). The performance of ELDCwc cells was investigated against stress environments of simulated digestive fluids.

Results

After incubation in simulated gastric (pH 2.5) and intestinal fluids (4% bile salt) for 2 h, the survival rate of ELDCwc cells (18.19% and 27.54%) was significantly higher than that of the free cells (0.0000009% and 0.0005%). The reason why B. subtilis embedded in microcapsules can resist the stress environments was that the mass production of extracellular proteins and polysaccharides prompted B. subtilis to form cell aggregates. The production of extracellular proteins and polysaccharides were regulated by the concentration of c-di-GMP and the expression of ydaJKLMN operon, abbA, sinI, slrA, slrB, abrR and sinR.

Conclusions

c-di-GMP is important for the production of extracellular polymer substance to enhance probiotic viability in stress environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anal AK, Singh H (2007) Recent advance in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18:240–251

    Article  CAS  Google Scholar 

  • Arashida H, Kugenuma T, Watanabe M, Maeda I (2019) Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air. J Biosci Bioeng 127(5):589–593

    Article  CAS  PubMed  Google Scholar 

  • Bedrunka P, Graumann PL (2017) Subcellular clustering of a putative c-di-GMP-dependent exopolysaccharide machinery affecting macro colony architecture in Bacillus subtilis. Environ Microbiol Rep 9:211–222

    Article  CAS  PubMed  Google Scholar 

  • Bendori SO, Pollak S, Hizi D, Eldar A (2015) The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 197(3):592–602

    Article  CAS  Google Scholar 

  • Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns LS, Hobley L, Stanley-Wall NR (2014) Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol 93(4):587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai Y, Chu F, Kolter R, Losick R (2008) Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67:254–263

    Article  CAS  PubMed  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56:27–35

    Article  CAS  PubMed  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua SL, Sivakumar K, Rybtke M, Yuan M, Andersen JB, Nielsen TE, Givskov M, Tolker-Nielsen T, Cao B, Kjelleberg S, Yang L (2015) C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth. Sci Rep UK 5:10052

    Article  Google Scholar 

  • Coelho-Rocha ND, de Castro CP, de Jesus LCL, Leclercq SY, de Cicco Sandes SH, Nunes AC, Azevedo V, Drumond MM, Mancha-Agresti P (2018) Microencapsulation of lactic acid bacteria improves the gastrointestinal delivery and in situ expression of recombinant fluorescent protein. Front Microbiol 9:2398

    Article  PubMed  PubMed Central  Google Scholar 

  • Coghetto CC, Brinques GB, Siqueira NM (2016) Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J Funct Foods 24:316–326

    Article  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem 41(4):815–823

    Article  CAS  Google Scholar 

  • Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR (2017) Investigation of pectin/starch hydrogel as carrier for oral delivery of probiotic bacteria. Int J Biol Macromol 97:536–543

    Article  CAS  PubMed  Google Scholar 

  • De Castro-Cislaghi FP, Silva CDE, Fritzen-Freire CB, Lorenz JG, Sant’Anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113:186–193

  • Eboigbodin KE, Biggs CA (2018) Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules 9(2):686–695

    Article  CAS  Google Scholar 

  • FAO/WHO (2002) Joint FAO/WHO (Food and Agriculture Organization/Word Health Organization) working group report on drafting guidelines for the evaluation of probiotics in food. FAO/WHO, London

    Google Scholar 

  • Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758

    Article  Google Scholar 

  • Gao X, Mukherjee S, Matthews PM, Hammad LA, Kearns DB, Dann CE (2013) Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway. J Bacteriol 195:4782–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Song H, Liu X, Yu W, Ma X (2016) Improved quorum sensing capacity by culturing Vibrio harveyi in microcapsules. J Biosci Bioeng 121:406–412

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Matsushima K, Kikuchi K-I (2004) Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55(1):135–140

    Article  CAS  PubMed  Google Scholar 

  • Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284

    Article  CAS  PubMed  Google Scholar 

  • Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78:80–88

    Article  CAS  PubMed  Google Scholar 

  • Kampf J, Stülke J (2017) Cyclic-di-GMP signaling meets extracellular polysaccharide synthesis in Bacillus subtilis. Env Microbiol Rep 9:182–185

    Article  CAS  Google Scholar 

  • Kanmani P, Kumar RS, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2011) Effect of cryopreservation and microencapsulation of lactic acid bacterium Enterococcus faecium MC13 for long-term storage. Biochem Eng J 58–59:140–147

    Article  CAS  Google Scholar 

  • Khezri M, Jouzani GS, Ahmadzadeh M (2013) Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis. Braz J Microbiol 47:47–54

    Article  CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13

    Article  CAS  Google Scholar 

  • Lee KY, Heo TR (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol 66:869–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Feng C, Li J, Mu Y, Liu Y, Kong M, Cheng X, Chen X (2017) Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. Int J Biol Macromol 105:924–930

    Article  CAS  PubMed  Google Scholar 

  • Lundberg ME, Becker EC, Choe S (2013) MstX and A putative potassium channel facilitate biofilm formation in Bacillus subtilis. PLoS ONE 8:1–10

    Article  Google Scholar 

  • Ma Y, Zhang Y, Liu Y, Chen L, Li S, Zhao W, Sun G, Li N, Wang Y, Guo X, Lv G, Ma X (2013) Investigation of alginate-epsilon-poly-L-lysine microcapsules for cell microencapsulation. J Biomed Mater Res A 101:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Mawad A, Helmy YA, Shalkami AG, Kathayat D, Rajashekara G (2018) E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro. Appl Microbiol Biot 102:10675–10690

  • Mishima Y, Amano Y, Takahashi Y, Mishima Y, Moriyama N, Miyake T, Ishimura N, Ishihara S, Kinoshita Y (2009) Gastric emptying of liquid and solid meals at various temperatures. J Gastroenterol 44(5):412–418

    Article  PubMed  Google Scholar 

  • Muzzarelli C, Stanic V, Gobbi L, Tosi G, Muzzarelli RAA (2004) Spray-drying of solutions containing chitosan together with polyuronans and characterization of the microspheres. Carbohydr Polym 57:73–82

    Article  CAS  Google Scholar 

  • Nack H (1970) Microencapsulation techniques, applications and problem. J Soc Cosmet Chem 21:85–98

    Google Scholar 

  • Ortakci F, Sert S (2012) Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system. J Dairy Sci 95:6918–6925

    Article  CAS  PubMed  Google Scholar 

  • Pimentel-González DJ, Campos-Montiel RG, Lobato-Calleros G, Vernon-Carter EJ (2009) Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Res Int 42:292–297

    Article  CAS  Google Scholar 

  • Rokka S, Rantamaki P (2011) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231:1–12

    Article  CAS  Google Scholar 

  • Romero D, Vlamakis H, Losick R, Kolter R (2011) An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 80:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506

    Article  CAS  PubMed  Google Scholar 

  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    Article  CAS  PubMed  Google Scholar 

  • Singh SJ, Gibbons NJ, Blackshaw P, Vincent M, Walker J, Perkins AC (2006) Gastric emptying of solids in normal children-a preliminary report. J Pediatr Surg 41(2):413–417

    Article  PubMed  Google Scholar 

  • Song HY, Yu WT, Gao M, Liu XD, Ma XJ (2013) Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydr Polym 96:181–189

    Article  CAS  PubMed  Google Scholar 

  • Song H, Yu W, Liu X, Ma X (2014) Improved probiotic viability in stress environments with post-culture of alginate-chitosan microencapsulated low density cells. Carbohydr Polym 108:10–16

    Article  CAS  PubMed  Google Scholar 

  • Song H, Zhang J, Qu J, Liu J, Yin P, Zhang G, Shang D (2019) Lactobacillus rhamnosus GG microcapsules inhibit Escherichia coli biofilm formation in coculture. Biotechnol Lett 41:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188:2681–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker AT, Bobay BG, Banse AV, Olson AL, Soderblom EJ, Moseley MA (2014) A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA. J Mol Biol 426:1911–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu S, Xu X, Zhao C, Yang F, Wang D (2017) Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate. Appl Microbiol Biot 101(9):3821–3828

    Article  CAS  Google Scholar 

  • Wu C, Cheng YY, Yin H, Song XN, Li WW, Zhou XX, Yu HQ (2013) Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesion. Sci Rep UK 3:1945–1952

    Article  Google Scholar 

  • Xue WM, Yu WT, Liu XD, He X, Wang W, Ma XJ (2004) Chemical method of breaking the cell-loaded sodium alginate/chitosan microcapsules. Chem J Chin Univ 25:1342–1346

    CAS  Google Scholar 

  • Yu WT, Song HY, Zheng GS, Liu XD, Zhang Y, Ma XJ (2011) Study on membrane characteristics of alginate–chitosan microcapsule with cell growth. J Membr Sci 377:214–220

    Article  CAS  Google Scholar 

  • Zanjani MAK, Tarzi BG, Sharifan A, Mohammadi N (2014) Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran J Pharm Res 13(3):843

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21476042) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17ZD209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Xiu.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, C., Zhao, S. et al. Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids. Biotechnol Lett 43, 677–690 (2021). https://doi.org/10.1007/s10529-020-03055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-03055-0

Keywords

Navigation