Skip to main content
Log in

Microbial bioconversion of feathers into antioxidant peptides and pigments and their liposome encapsulation

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

The co-encapsulation of bioactive peptides obtained from degradation of chicken feathers and flexirubin-type pigment produced by Chryseobacterium sp. kr6 into phosphatidylcholine liposomes was investigated.

Results

Control empty liposomes showed mean diameter of 168.5 nm, varying to 185.4, 102.0 and 98.5 nm after the encapsulation of peptides, pigment and their co-encapsulation, respectively. Control liposomes presented zeta potential of − 20.9 mV, while the formulations containing the bioactive compounds showed values of − 30 mV or higher in magnitude. Infrared analysis revealed typical spectra for phosphatidylcholine, suggesting that no new chemical bonds were formed after encapsulation. ABTS radical scavenging assay showed that the antioxidant activity of the compounds was maintained after encapsulation.

Conclusions

Feather waste can be a valuable substrate for simultaneous production of antioxidant peptides and pigment by Chryseobacterium sp. kr6, and their encapsulation into liposomes may be a suitable alternative for delivery of these natural antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aruldass CA, Dufossé L, Ahmad WA (2018) Current perspective of yellowish-orange pigments from microorganisms - A review. J Clean Prod 180:168–182

    Article  CAS  Google Scholar 

  • Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975–999

    Article  CAS  Google Scholar 

  • Braga MC, Vieira ECS, Oliveira TF (2018) Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem 265:308–315

    Article  CAS  Google Scholar 

  • Brandelli A, Taylor TM (2015) Nanostructured and nanoencapsulated natural antimicrobials for use in food products. In: Taylor TM (ed) Handbook of Natural Antimicrobials for Food Safety and Quality. Woodhead Publishing, Oxford, pp 229–257

    Chapter  Google Scholar 

  • Brandelli A, Sala L, Kalil SJ (2015) Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res Int 73:3–12

    Article  CAS  Google Scholar 

  • Callegaro K, Brandelli A, Daroit DJ (2019) Beyond plucking: feathers bioprocessing into valuable protein hydrolysates. Waste Manag 95:399–415

    Article  CAS  Google Scholar 

  • Corrêa APF, Bertolini D, Lopes NA, Veras FF, Brandelli A (2019) Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. LWT Food Sci Technol 101:107–112

    Article  Google Scholar 

  • Domazou AS, Luisi PL (2002) Size distribution of spontaneously formed liposomes by the alcohol injection method. J Liposome Res 12:205–220

    Article  CAS  Google Scholar 

  • Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    Article  CAS  Google Scholar 

  • Fontoura R, Daroit DJ, Correa APF, Meira SMM, Mosquera M, Brandelli A (2014) Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. New Biotechnol 31:506–513

    Article  CAS  Google Scholar 

  • Fontoura R, Daroit DJ, Corrêa APF, Moresco KS, Santi L, Beys-da-Silva WO, Yates JR III, Moreira JCF, Brandelli A (2019) Characterization of a novel antioxidant peptide from feather keratin hydrolysates. New Biotechnol 49:71–76

    Article  CAS  Google Scholar 

  • Grazziotin A, Pimentel FA, de Jong EV, Brandelli A (2006) Nutritional improvement of feather protein by treatment with microbial keratinase. Anim Feed Sci Technol 126:135–144

    Article  CAS  Google Scholar 

  • Gruszecki WI, Strzałka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115

    Article  CAS  Google Scholar 

  • Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn CJF, Jabbari E, Linder M, Arab-Tehrany E (2014) Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 461:519–528

    Article  CAS  Google Scholar 

  • Hosseini FS, Ramezanzade L, Nikkhah M (2017) Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. Int J Biol Macromol 105:1455–1463

    Article  CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  • Imran M, Revol-Junelles AM, Paris C, Guedon E, Linder M, Desobry S (2015) Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin. LWT Food Sci Technol 62:341–349

    Article  CAS  Google Scholar 

  • Jiménez MEP, Pinilla CMB, Rodrigues E, Brandelli A (2019) Extraction and partial characterisation of antioxidant pigment produced by Chryseobacterium sp. kr6. Nat Prod Res 33:1541–1549

    Article  Google Scholar 

  • Malheiros PS, Micheletto YMS, Silveira NP, Brandelli A (2010) Development and characterization of phosphatidylcholine nanovesicles containing the antimicrobial peptide nisin. Food Res Int 43:1198–1203

    Article  CAS  Google Scholar 

  • Malheiros PS, Sant’Anna V, Micheletto YMS, Silveira NP, Brandelli A (2011) Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes. J Nanoparticle Res 13:3545–3552

    Article  CAS  Google Scholar 

  • Mohan A, Rajendran SRCK, He QS, Bazinet L, Udenigwe CC (2015) Encapsulation of food protein hydrolysates and peptides: a review. RSC Adv 5:79270–79278

    Article  CAS  Google Scholar 

  • Mosquera M, Giménez B, Silva IM, Boelter JF, Montero P, Gómez-Guillén MC, Brandelli A (2014) Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chem 156:144–150

    Article  CAS  Google Scholar 

  • Paini M, Daly SR, Aliakbarian B, Fathi A, Tehrany EA, Perego P, Dehghani F, Valtchev P (2015) An efficient liposome based method for antioxidants encapsulation. Colloids Surf B: Biointerfaces 136:1067–1072

    Article  CAS  Google Scholar 

  • Pinilla CMB, Noreña CPZ, Brandelli A (2017) Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chem 220:470–476

    Article  CAS  Google Scholar 

  • Ramezanzade L, Hosseini FS, Nikkhah M (2017) Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem 234:220–229

    Article  CAS  Google Scholar 

  • Ribeiro J, Santos MJMC, Silva LKR, Pereira LCL, Santos IA, Lannes SCS, Silva MV (2018) Natural antioxidants used in meat products: A brief review. Meat Science 148:181–188

    Article  Google Scholar 

  • Riffel A, Lucas F, Heeb P, Brandelli A (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179:258–265

    Article  CAS  Google Scholar 

  • Silva R, Ferreira H, Little C, Cavaco-Paulo A (2010) Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason Sonochem 17:628–632

    Article  CAS  Google Scholar 

  • Singh A, Krishnan KP, Prabaharan D, Sinha RK (2017) Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria. J Basic Microbiol 57:770–780

    Article  CAS  Google Scholar 

  • Sonam KS, Guleria S (2017) Synergistic antioxidant activity of natural products. Ann Pharmacol Pharm 2:1086

    Google Scholar 

  • Taladrid D, Marín D, Alemán A, Álvarez-Acero I, Montero P, Gómez-Guillén MC (2017) Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Res Int 100:541–550

    Article  CAS  Google Scholar 

  • Venil CK, Zakaria ZA, Usha R, Ahmad WA (2014) Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal Agric Biotechnol 3:103–107

    Article  Google Scholar 

  • Woodbury DJ, Richardson ES, Grigg AW, Welling RD, Knudson BH (2006) Reducing liposome size with ultrasound: bimodal size distributions. J Liposome Res 16:57–80

    Article  CAS  Google Scholar 

  • Xia S, Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Qin F (2015) Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation. Colloids Surf B: Biointerfaces 128:172–180

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support of CNPq (Grant 306936/2017-8) and scholarships from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(pdf 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolini, D., Jiménez, M.E.P., dos Santos, C. et al. Microbial bioconversion of feathers into antioxidant peptides and pigments and their liposome encapsulation. Biotechnol Lett 43, 835–844 (2021). https://doi.org/10.1007/s10529-020-03067-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-03067-w

Keywords

Navigation