Skip to main content
Log in

Assessment of indoor air quality in geriatric environments of southwestern Europe

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate physical–chemical and microbial indicators of indoor air quality in three nursing houses (NHs) located in rural areas of the northeast of Portugal. The parameters were measured during two campaigns (winter and summer), twice a day, and in four distinct spaces for spatial variability assessment: dining room, living room, double bedroom and outdoor of the NHs. Physical–chemical indicators were assessed by using a Graywolf IQ 610 probe. Airborne microbial levels were evaluated by direct impaction to the culture media, and subsequently, the microorganisms were identified molecularly. Mean concentrations of physical–chemical (with the exception of total volatile organic compounds, TVOCs) and microbial indicators did not exceed the legal limits. Overall, in all NHs, the indoor-to-outdoor (I/O) concentration ratios of chemical and biological pollutants were ≤ 1 in the summer, while in the winter were > 1. Bacillus, Micrococcus and Staphylococcus were the dominant bacterial genera, and Aspergillus, Cladosporium and Penicillium were the dominant fungal genera. The diversity of species was higher in summer. The main results suggest that a good air quality prevails in all studied spaces, although conditions less desirable have been identified in winter, indicating the need to deepen the study of air quality in these places, since these are occupied by elderly people who are more susceptible to infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguiar, L., Mendes, A., Pereira, C., Neves, M. P., & Teixeira, P. J. (2014). Contaminação microbiológica do ar em lares da 3 idade na cidade do Porto. Projeto GERIA. Observações - Boletim Epidemiológico, artigos breves, 10, 33–36.

    Google Scholar 

  • Almeida-Silva, M., Wolterbeek, H. T., & Almeida, S. M. (2014). Elderly exposure to indoor air pollutants. Atmospheric Environment, 85, 54–63. https://doi.org/10.1016/j.atmosenv.2013.11.061.

    Article  CAS  Google Scholar 

  • Asadi, E., Costa, J. J., & Silva, G. M. (2011). Indoor air quality audit implementation in a hotel building in Portugal. Building and Environment, 46, 1611–1623. https://doi.org/10.1016/j.buildenv.2011.01.027.

    Article  Google Scholar 

  • Asif, A., Zeeshan, M., Hashmi, I., Zahid, U., & Bhatti, F. M. (2018). Microbial quality assessment of indoor air in a large hospital building during winter and spring seasons. Building and Environment, 135, 68–73. https://doi.org/10.1016/j.buildenv.2018.03.010.

    Article  Google Scholar 

  • Awad, H. A., Saeed, Y., Hassan, Y., Fawzy, Y., & Osman, M. (2018). Air microbial quality in certain public buildings, Egypt: A comparative study. Atmospheric Pollution Research, 9, 617–626. https://doi.org/10.1016/j.apr.2017.12.014.

    Article  Google Scholar 

  • Aydogdu, H., Asan, A., & Otkun, T. M. (2010). Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environmental Monitoring and Assessment, 164, 53–66. https://doi.org/10.1007/s10661-009-0874-0.

    Article  CAS  Google Scholar 

  • Balasubramanian, R., Nainar, P., & Rajasekar, A. (2012). Airborne bacteria, fungi, and endotoxin levels in residential microenvironments: A case study. Aerobiologia, 28, 375–390. https://doi.org/10.1007/s10453-011-9242-y.

    Article  Google Scholar 

  • Bentayeb, M., Viegi, G., Simoni, M., Norback, D., Baldacci, S., Maio, S., et al. (2013). Indoor air pollution and respiratory health in the elderly. Journal of Environmental Science and Health, Part A, 48, 37–41.

    Article  Google Scholar 

  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs. https://doi.org/10.2307/1942268.

    Article  Google Scholar 

  • Cai, L., Ye, L., Tong, Y. H. A., Lok, S., & Zhang, T. (2013). Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS ONE, 8(1), e53649.

    Article  CAS  Google Scholar 

  • Canha, N., Lage, J., Candeias, S., Alves, C., & Almeida, M. S. (2017). Indoor air quality during sleep under different ventilation patterns. Atmospheric Pollution Research, 8, 1132–1142.

    Article  Google Scholar 

  • Chen, Q., & Hildemann, L. M. (2009). The effects of human activities on exposure to particulate matter and bioaerosols in residential homes. Environmental Science and Technology, 43(13), 4641–4646. https://doi.org/10.1021/es802296j.

    Article  CAS  Google Scholar 

  • Cheng, J. T., Chang, Y. C., Tsou, N. P., Wu, J. M., & Feng, S. Y. (2010). The determinants of mass concentration of indoor particulate matter in a nursing home. Applied Mechanics and Materials, 44, 3026–3030. https://doi.org/10.4028/www.scientific.net/AMM.44-47.3026.

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2015). PRIMER v7: User Manual/Tutorial. Plymouth: PRIMER-E Ltd.

    Google Scholar 

  • Coombs, K., Taft, D., Ward, V. D., Green, B. J., Chew, G. L., Shamsaei, B., et al. (2018). Variability of indoor fungal microbiome of green and non-green low-income homes in Cincinnati, Ohio. Science of the Total Environment, 610, 212–218. https://doi.org/10.1016/j.scitotenv.2017.07.274.

    Article  CAS  Google Scholar 

  • Dietze, B., Rath, A., Wendt, C., & Martiny, H. (2001). Survival of MRSA on sterile goods packaging. Journal of Hospital Infection, 49, 255–261. https://doi.org/10.1053/jhin.2001.1094.

    Article  CAS  Google Scholar 

  • Faridi, S., Hassanvand, S. M., Naddafi, K., Yunesian, M., Nabizadeh, R., Sowlat, H. M., et al. (2015). Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory. Environmental Science and Pollution Research, 22, 8190–8200. https://doi.org/10.1007/s11356-014-3944-y.

    Article  CAS  Google Scholar 

  • Gołofit-Szymczak, M., & Górny, R. L. (2010). Bacterial and fungal aerosols in air-conditioned office buildings in Warsaw, Poland—the winter season. International Journal of Occupational Safety and Ergonomics, 16(4), 465–476.

    Article  Google Scholar 

  • Haas, D., Habib, J., Luxner, J., Galler, H., Zarfel, G., Schlacher, R., et al. (2014). Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria. Atmospheric Environment, 98, 640–647.

    Article  CAS  Google Scholar 

  • Hameed, A. A. A., Khoder, M. I., Yuosra, S., Osman, A. M., & Ghanem, S. (2009). Diurnal distribution of airborne bacteria and fungi in the atmosphere of Helwan area, Egypt. Science of the Total Environment, 407, 6217–6222. https://doi.org/10.1016/j.scitotenv.2009.08.028.

    Article  CAS  Google Scholar 

  • Hayleeyesus, S. F., & Manaye, A. M. (2014). Microbiological quality of indoor air in university libraries. Asian Pacific Journal of Tropical Biomedicin, 4(Suppl 1), S312–S317. https://doi.org/10.12980/APJTB.4.2014C807.

    Article  Google Scholar 

  • Henderson, P. A., & Seaby, R. M. H. (2007). Community analysis package 4.0. Lymington: Pisces Conservation Ltd.

    Google Scholar 

  • Hulin, M., Simoni, M., Viegi, G., & Annesi-Maesano, I. (2012). Respiratory health and indoor air pollutants based on quantitative exposure assessments. European Respiratory Journal, 40(4), 1033–1045. https://doi.org/10.1183/09031936.00159011.

    Article  CAS  Google Scholar 

  • Hussina, N. H. M., Sann, L. M., Shamsudin, M. N., & Hashim, Z. (2011). Characterization of bacteria and fungi bioaerosol in the indoor air of selected primary schools in Malaysia. Indoor and Built Environment. https://doi.org/10.1177/1420326X11414318.

    Article  Google Scholar 

  • Jardim, D, Diegues, P., Santiago, A., Matias, P., Reis, V., Matos, J., et al. (2015). Metodologia de avaliação da qualidade do ar no interior de edifícios de comércio e serviços no âmbito da Portaria 353-A/2013, de 4 de dezembro. Agência Portuguesa do Ambiente em parceria com a Direção-Geral da Saúde. Retrieved March 10, 2020, from http://apambiente.pt/_zdata/DAR/Ar%20Interior/Metodologia_Avaliacao_Qualidade_Ar_Interior_1.0.pdf.

  • Jeddi, M. Z., Yunesian, M., Gorji, M. E., Noori, N., Pourmand, M. R., & Khaniki, G. R. (2014). Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets. Journal of Health, Population and Nutrition, 32, 391–399.

    Google Scholar 

  • Karottki, D. G., Spilak, M., Frederiksen, M., Gunnarsen, L., Brauner, E. V., Kolarik, B., et al. (2013). An indoor air filtration study in homes of elderly: Cardiovascular and respiratory effects of exposure to particulate matter. Environmental Health, 12, 1–10.

    Article  Google Scholar 

  • Kim, K. H., Kabir, E., & Jahan, S. A. (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences, 67, 23–35. https://doi.org/10.1016/j.jes.2017.08.027.

    Article  Google Scholar 

  • Knudsen, M. S., Gunnarsen, L., & Madsen, M. A. (2017). Airborne fungal species associated with mouldy and non-mouldy buildings e effects of air change rates, humidity, and air velocity. Building and Environment, 122, 161–170. https://doi.org/10.1016/j.buildenv.2017.06.017.

    Article  Google Scholar 

  • Langer, S., Beko, G., Bloom, E., Widheden, A., & Ekberg, L. (2015). Indoor air quality in passive and conventional new houses in Sweden. Building and Environment, 93, 92–100. https://doi.org/10.1016/j.buildenv.2015.02.004.

    Article  Google Scholar 

  • Lee, J.-H., & Jo, W.-K. (2006). Characteristics of indoor and outdoor bioaerosols at Korean high-rise. apartment buildings. Environmental Research, 101, 11–17. https://doi.org/10.1016/j.envres.2005.08.009.

    Article  CAS  Google Scholar 

  • Madsen, M. A., Jenabian, M. S., Islam, Z. M., Frankel, M., Spilak, M., & Frederiksen, W. M. (2018). Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus positive occupants. Environmental Research, 160, 282–291.

    Article  CAS  Google Scholar 

  • Mashat, B. (2015). Indoor and outdoor microbial aerosols at the holy mosque: A case study. Atmospheric Pollution Research, 6, 990–996. https://doi.org/10.1016/j.apr.2015.05.004.

    Article  Google Scholar 

  • Mendes, A., Papoila, A. L., Carreiro-Martins, P., Aguiar, L., Bonassi, S., Caires, I., et al. (2017). The influence of thermal comfort on the quality of life of nursing home residents. Journal of Toxicology and Environmental Health, Part A, 80(13–15), 729–739. https://doi.org/10.1080/15287394.2017.1286929.

    Article  CAS  Google Scholar 

  • Mirzaei, R., Shahriary, E., Qureshi, I. M., Rakhshkhorshid, A., Khammary, A., & Mohammadi, M. (2014). Quantitative and qualitative evaluation of bio-aerosols in surgery rooms and emergency department of an educational hospital. Jundishapur Journal of Microbiology, 7, 1–5.

    Article  Google Scholar 

  • Mourtzoukou, E. G., & Falagas, M. E. (2007). Exposure to cold and respiratory tract infections. International Journal of Tuberculosis and Lung Disease, 11, 938–943.

    CAS  Google Scholar 

  • Nadali, A., Arfaeinia, H., Asadgol, Z., & Fahiminia, M. (2020). Indoor and outdoor concentration of PM10, PM2.5 and PM1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environmental Pollutants and Bioavailability, 32(1), 47–55. https://doi.org/10.1080/26395940.2020.1728198.

    Article  CAS  Google Scholar 

  • Neto, F. R. A., & Siqueira, L. F. G. (2000). Guidelines for indoor air quality in offices in Brazil. Proceedings of Healthy Buildings, 4, 549–554.

    Google Scholar 

  • Oliveira, L., Pereira, J. A., Lino-Neto, T., Bento, A., & Baptista, P. (2012). Fungal diversity associated to the olive moth, Prays oleae Bernard: a survey for potential entomopathogenic fungi. Microbial Ecology, 63, 964–974.

    Article  Google Scholar 

  • Ordinance n.º 353-A/2013 of 4th December (2013). Diário da República, n.º 235/2013, 1st serie. Ministry of environment, territory planning, health and solidarity, employment and social security, Lisbon, Portugal. https://data.dre.pt/eli/port/353-a/2013/p/cons/20140131/pt/html.

  • Ormandy, D., & Ezratty, V. (2012). Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy, 49, 116–121. https://doi.org/10.1016/j.enpol.2011.09.003.

    Article  Google Scholar 

  • Reddy, K. M., & Srinivas, T. (2017). Mold allergens in indoor play school environment. Energy Procedia, 109, 27–33.

    Article  Google Scholar 

  • Rodrigues, F., & Feliciano, M. (2019). Improving indoor air quality of naturally ventilated classrooms in the northeast of Portugal. Environmental Engineering and Management Journal, 18, 1423–1437.

    Article  CAS  Google Scholar 

  • Sattar, S. A., & Bact, D. (2016). Indoor air as a vehicle for human pathogens: Introduction, objectives, and expectation of outcome. American Journal of Infection Control, 44(9 Suppl), S95–S101. https://doi.org/10.1016/j.ajic.2016.06.010.

    Article  Google Scholar 

  • Seaby, R. M., & Henderson, P. A. (2006). Species Diversity and richness. Version 4. Lymington: Pisces Conservation Ltd.

    Google Scholar 

  • Sharma, P. D. (2005). Fungi and allied organisms. Oxford: Alpha Science International Ltd.

    Google Scholar 

  • Stryjakowska-Sekulska, M., Piotraszewska-Pająk, A., Szyszka, A., Nowicki, M., & Filipiak, M. (2007). Microbiological quality of indoor air in university rooms. Polish Journal of Environmental Studies, 16, 623–632.

    Google Scholar 

  • Takeuchi, F., Watanabe, S., Baba, T., Yuzawa, H., Ito, T., Morimoto, Y., et al. (2005). Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. Journal of Bacteriology, 187(21), 7292–7308.

    Article  CAS  Google Scholar 

  • Tungjai, A., & Kubaha, K. (2017). Indoor air quality evaluation of isolation room assessing the feasibility of using the heat demand-outdoor. Energy procedia, 138, 858–863.

    Article  CAS  Google Scholar 

  • Verde, C. S., Almeida, M. S., Matos, J., Guerreiro, D., Meneses, M., Faria, T., et al. (2015). Microbiological assessment of indoor air quality at different hospital sites. Research in Microbiology, 166, 557–563. https://doi.org/10.1016/j.resmic.2015.03.004.

    Article  Google Scholar 

  • WHO—World Health Organization. (2009). WHO guidelines for indoor air quality: Dampness and mould. World Health Organization Regional Office for Europe, Copenhagen. Retrieved January, 2019, from https://www.euro.who.int/__data/assets/pdf_file/0017/43325/E92645.pdf.

  • WHO—World Health Organization. (2010). Guidelines for indoor air quality: Selected pollutants. World Health Organization Regional Office for Europe, Copenhagen. Retrieved January, 2019, from https://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf.

  • Yang, W., Sohn, J., Kim, J., Son, B., & Park, J. (2009). Indoor air quality investigation according to age of the school buildings in Korea. Journal of Environmental Management, 90, 348–354.

    Article  CAS  Google Scholar 

  • Yilmaz, O., Asan, A., Aydogdu, H., & Sem, B. (2017). Airborne fungal diversity inside a nursing home in Edirne, Turkey. Fresenius Environmental Bulletin, 26(12), 7025–7033.

    CAS  Google Scholar 

  • Zhai, Y., Li, X., Wang, T., Wang, B., Li, C., & Zeng, G. (2018). A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International, 113, 74–90. https://doi.org/10.1016/j.envint.2018.01.007.

    Article  Google Scholar 

  • Zhu, H., Phelan, P., Duan, T., Raupp, G., & Fernando, S. J. H. (2003). Characterizations and relationships between outdoor and indoor bioaerosols in an office building. China particuology, 3, 119–123. https://doi.org/10.1016/S1672-2515(07)60122-5.

    Article  Google Scholar 

  • Zorpas, A., & Skouroupatis, A. (2016). Indoor air quality evaluation of two museums in a subtropical climate conditions. Sustainable Cities and Society, 20, 52–60. https://doi.org/10.1016/j.scs.2015.10.002.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO [UIDB/00690/2020]. The authors would also like to acknowledge Leonardo Furst for the support provided in the elaboration of some figures, as well as all the members of each nursing home team for his unconditional support throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermelinda L. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, E.L., Madacussengua, O., Baptista, P. et al. Assessment of indoor air quality in geriatric environments of southwestern Europe. Aerobiologia 37, 139–153 (2021). https://doi.org/10.1007/s10453-020-09681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09681-5

Keywords

Navigation