Skip to main content
Log in

On the Conformal Mappings and the Global Operator G

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Some important global properties of the slice regular functions have been obtained from the global operator

$$\begin{aligned}G:= \Vert \mathbf {x}\Vert ^2 \partial _0 + \mathbf {x} \sum _{i=1}^3 x_i \partial _i , \end{aligned}$$

such as a global characterization, a global Cauchy integral theorem and a global Borel–Pompeiu formula, see Colombo et al. (Trans Am Math Soc 365:303–318, 2013), González Cervantes (Complex Anal Oper Theory 13:2527–2539, 2019) and González Cervantes and González-Campos (Complex Var Elliptic Equ 65:1–10, 2020, https://doi.org/10.1080/17476933.2020.1738410) [4, 13, 14], respectively. The aim of this work is to show: some relationships between G and the composition operator with the conformal mappings, a conformal covariance property of G along with its interpretations in terms of a covariant functor, all consequences of these facts for the slice regular functions, a Leibnitz rule associated to the operator G and a characterization of the real Components of slice regular functions in terms of a Non-constant Coefficient second order differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Clifford numbers and Möbius transformations in \(\mathbb{R}^{n}\), in: Clifford Algebras and their Applications in Mathematical Physics, J. S. R. Chrisholm and A. K. Common (eds.), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., Vol.183, Reidel, 167–175 (1986)

  2. Castillo Villalba,M.P., Colombo, F., Gantner, J., González-Cervantes, J.O.: Bloch, Besov and Dirichlet Spaces of Slice Hyperholomorphic Functions. Complex Anal. Oper. Theory https://doi.org/10.1007/s11785-014-0380-4

  3. Colombo, F., Gentili, G., Sabadini, I., Struppa, D.: Extension results for slice regular functions of a quaternionic variable. Adv. Math. 222, 1793–1808 (2009). https://doi.org/10.1016/j.aim.2009.06.015

    Article  MathSciNet  MATH  Google Scholar 

  4. Colombo, F., González-Cervantes, J.O., Sabadini, I.: A non constant coefficients differential operator associated to slice monogenic functions. Trans. Am. Math. Soc. 365, 303–318 (2013)

    Article  Google Scholar 

  5. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus Theory and Applications of Slice Hyperholomorphic Functions. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  6. Colombo, F., Gantner, J.: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes. Operator Theory: Advances and Applications. Birkhäuser, Basel (2019)

    Book  Google Scholar 

  7. Colombo, F., Gantner, J., Kimsey, D.P.: Spectral Theory on the S-Spectrum for Quaternionic Operators. Operator Theory: Advances and Applications. Birkhäuser, Basel (2018)

    Book  Google Scholar 

  8. Egorov, Y.V., Shubin, M.A.: Foundations of the Classical Theory of Partial Differential Equations. Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-58093-2

    Book  MATH  Google Scholar 

  9. Gantner, J., González-Cervantes, J.O., Janssens, T.: BMO- and VMO-spaces of slice hyperholomorphic functions. Math. Nachrichten 2259–2279 (2017). https://doi.org/10.1002/mana.201600379

  10. Gentili, G., Stoppato, C., Struppa, D.C.: Regular Functions of a Quaternionic Variable Monographs in Mathematics. Springer, Berlin (2013)

    Book  Google Scholar 

  11. Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser Verlag, Basel (1990)

    Book  Google Scholar 

  12. Ghiloni, R., Perotti, A.: Global differential equations for slice regular functions. Math. Nachrichten 287(5–6), 561–573 (2014)

    Article  MathSciNet  Google Scholar 

  13. González Cervantes, J.O.: On Cauchy integral theorem for quaternionic slice regular functions. Complex Anal. Oper. Theory 13, 2527–2539 (2019)

    Article  MathSciNet  Google Scholar 

  14. González Cervantes, J.O., González-Campos, D.: The global Borel–Pompieu-type formula for quaternionic slice regular functions. Complex Var. Elliptic Equ. 65, 1–10 (2020). https://doi.org/10.1080/17476933.2020.1738410

    Article  MathSciNet  Google Scholar 

  15. González-Cervantes, J.O., Luna-Elizarrarás, M.E., Shapiro, M.: On some categories and functors in the theory of quaternionic Bergman spaces. Adv. Appl. Clifford Algebras 2, 325–338 (2009)

    Article  MathSciNet  Google Scholar 

  16. González-Cervantes, J.O., Shapiro, M.: Hyperholomorphic Bergman spaces and Bergman operators associated with domains in \({\mathbb{C}}^{2}\). Complex Anal. Oper. Theory 2, 361–382 (2008)

    Article  MathSciNet  Google Scholar 

  17. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford calculus for physicists and engineers. Wiley, New York (1997)

    MATH  Google Scholar 

  18. Kravchenko, V.V., Shapiro, M.: Integral Representations for Spatial Models of Mathematical Physics. Pitman Research Notes in Mathematics Series, vol. 351. Longman, Harlow (1996)

    Google Scholar 

  19. Perotti, A.: Slice Regularity and Harmonicity on Clifford Algebras. In: Bernstein S. (eds) Topics in Clifford Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23854-4_3 (2019)

  20. Stoppato, C.: Some Notions of Subharmonicity over the Quaternions. In: Bernstein S. (eds) Topics in Clifford Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23854-4_4(2019)

  21. Shapiro, M., Vasilevski, N.L.: Quaternionic \(\psi \)-monogenic functions, singular operators and boundary value problems I. \(\psi \)-hyperholomorphy function theory. Complex Var. Theory. Appl. 27, 17–46 (1995)

    Google Scholar 

  22. Shapiro, M., Vasilevski, N.L.: Quaternionic \(\psi \)-hyperholomorphic functions, singular operators and boundary value problems II. Algebras of singular integral operators and Riemann type boundary value problems. Complex Var. Theory Appl. 27, 67–96 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Sudbery, A.: Quaternionic analysis. Math. Proc. Philos. Soc. 85, 199–225 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel González Campos.

Additional information

Communicated by Vladislav Kravchenko

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by CONACYT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervantes, J.O.G., Campos, D.G. On the Conformal Mappings and the Global Operator G. Adv. Appl. Clifford Algebras 31, 6 (2021). https://doi.org/10.1007/s00006-020-01103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-020-01103-6

Keywords

Navigation