Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Studies towards Fungal glycosides: An Overview

Author(s): Hidayat Hussain*, Iftikhar Ali, Elizbit, Wahid Hussain, Nilufar Z. Mamadalieva, Amjad Hussain, Maroof Ali, Ishtiaq Ahmed, Izhar Ullah and Ivan R. Green

Volume 24, Issue 24, 2020

Page: [2865 - 2901] Pages: 37

DOI: 10.2174/1385272824999201105160034

Price: $65

Abstract

Fungi have provided intriguing chemical diversity and have additionally proven to be a tremendous source for a great variety of therapeutic molecules. Various fungal glycosides have been reported from fungi and the majority of these metabolites possess cytotoxic and antimicrobial effects. Although natural products are obtained in most cases in small amounts from the specific natural source, total syntheses of these valuable commodities remain one of the most important ways of obtaining them on a large scale for more detailed and comprehensive biological studies. In addition, the total synthesis of secondary metabolites is a useful tool, not only for the disclosure of novel complex pharmacologically active molecules but also for the establishment of cutting-edge methodologies in synthetic chemistry. Numerous fungal glycosides have been synthesized in the last four decades regarding the following natural product classes viz., tetramic acid glycosides (epicoccamides A and D), polyketide glycosides (TMC-151C), 2-pyrone glycosides (epipyrone A), diterpene glycosides (sordarin), depside glycosides (CRM646-A and –B, KS-501 and KS- 502), caloporosides (caloporoside A), glycolipids (emmyguyacins A and B, acremomannolipin A), and cerebrosides (cerebroside B, Asperamide B, phalluside-1, Sch II). The current literature review about fungal glycoside synthetic studies is, therefore, of interest for a wide range of scientists and researchers in the field of organic, natural product, and medicinal chemists as it outlines key strategies of fungal glycosides and, in particular, glycosylation, the known biological and pharmacological effects of these natural compounds have afforded a new dimension of exposure.

Keywords: Natural product, fungi, fungal glycoside, chemical diversity, total synthesis, biological effects.

Graphical Abstract
[1]
Saxena, S.; Chhibber, M.; Singh, I.P. Fungal bioactive compounds in pharmaceutical research and development. Curr. Bioact. Compd., 2019, 15, 211-231.
[http://dx.doi.org/10.2174/1573407214666180622104720]
[2]
Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 1993, 3(2), 97-130.
[http://dx.doi.org/10.1093/glycob/3.2.97] [PMID: 8490246]
[3]
Ati, J.; Lafite, P.; Daniellou, R. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides. Beilstein J. Org. Chem., 2017, 13, 1857-1865.
[http://dx.doi.org/10.3762/bjoc.13.180] [PMID: 29062404]
[4]
Flitsch, S.; Perez, S.; Opdenakker, G. A Roadmap for Glycoscience in Europe. European Science Foundation; ESF: Strasbourg, 2015, pp. 1-15.
[5]
Kren, V.; Martínková, L. Glycosides in medicine: the role of glycosidic residue in biological activity. Curr. Med. Chem., 2001, 8(11), 1303-1328.
[http://dx.doi.org/10.2174/0929867013372193] [PMID: 11562268]
[6]
Pandey, R.P.; Parajuli, P.; Koirala, N.; Lee, J.H.; Park, Y.I.; Sohng, J.K. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol. Cells, 2014, 37(2), 172-177.
[http://dx.doi.org/10.14348/molcells.2014.2348] [PMID: 24599002]
[7]
Stupp, G.S.; von Reuss, S.H.; Izrayelit, Y.; Ajredini, R.; Schroeder, F.C.; Edison, A.S. Chemical detoxification of small molecules by Caenorhabditis elegans. ACS Chem. Biol., 2013, 8(2), 309-313.
[http://dx.doi.org/10.1021/cb300520u] [PMID: 23163740]
[8]
Vogt, T.; Jones, P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci., 2000, 5(9), 380-386.
[http://dx.doi.org/10.1016/S1360-1385(00)01720-9] [PMID: 10973093]
[9]
Schobert, R. Domino syntheses of bioactive tetronic and tetramic acids. Naturwissenschaften, 2007, 94(1), 1-11.
[http://dx.doi.org/10.1007/s00114-006-0152-8] [PMID: 16944091]
[10]
Royles, B.J.L. Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem. Rev., 1995, 95, 1981-2001.
[http://dx.doi.org/10.1021/cr00038a009]
[11]
Matsunaga, S.; Fusetani, N.; Kato, Y. Aurantosides A and B: cytotoxic tetramic acid glycosides from the marine sponge Tbeonella sp. J. Am. Chem. Soc., 1991, 113, 9690-9692.
[http://dx.doi.org/10.1021/ja00025a054]
[12]
Sata, N.U.; Wada, S.I.; Matsunaga, S.; Watabe, S.; van Soest, R.W.M.; Fusetani, N. Rubrosides A-H, new bioactive tetramic acid glycosides from the marine sponge Siliquariaspongia japonica. J. Org. Chem., 1999, 64, 2331-2339.
[http://dx.doi.org/10.1021/jo981995v]
[13]
Sakuda, S.; Ikeda, H.; Nakamura, T.; Kawachi, R.; Kondo, T.; Ono, M.; Sakurada, M.; Inagaki, H.; Ito, R.; Nagasawa, H. Blasticidin A derivatives with highly specific inhibitory activity toward aflatoxin production in Aspergillus parasiticus. J. Antibiot. (Tokyo), 2000, 53(12), 1378-1384.
[http://dx.doi.org/10.7164/antibiotics.53.1378] [PMID: 11217803]
[14]
Sakuda, S.; Ikeda, H.; Nakamura, T.; Nagasawa, H. Absolute configuration of a polyol fragment of blasticidin A, a specific inhibitor of aflatoxin production. Biosci. Biotechnol. Biochem., 2004, 68(2), 407-412.
[http://dx.doi.org/10.1271/bbb.68.407] [PMID: 14981305]
[15]
Sakuda, S.; Matsumori, N.; Furihata, K.; Nagasawa, H. Assignment of the absolute configuration of blasticidin A and revision of that of aflastatin A. Tetrahedron Lett., 2007, 48, 2527-2531.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.024]
[16]
Wangun, H.V.; Dahse, H.M.; Hertweck, C. Epicoccamides B-D, glycosylated tetramic acid derivatives from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. J. Nat. Prod., 2007, 70(11), 1800-1803.
[http://dx.doi.org/10.1021/np070245q] [PMID: 17966985]
[17]
Ondeyka, J.; Harris, G.; Zink, D.; Basilio, A.; Vicente, F.; Bills, G.; Platas, G.; Collado, J.; Gonzáez, A.; de la Cruz, M.; Martin, J.; Kahn, J.N.; Galuska, S.; Giacobbe, R.; Abruzzo, G.; Hickey, E.; Liberator, P.; Jiang, B.; Xu, D.; Roemer, T.; Singh, S.B. Isolation, structure elucidation, and biological activity of virgineone from Lachnum virgineum using the genome-wide Candida albicans fitness test. J. Nat. Prod., 2009, 72(1), 136-141.
[http://dx.doi.org/10.1021/np800511r] [PMID: 19115836]
[18]
Figueroa, M.; Raja, H.; Falkinham, J.O., III; Adcock, A.F.; Kroll, D.J.; Wani, M.C.; Pearce, C.J.; Oberlies, N.H. Peptaibols, tetramic acid derivatives, isocoumarins, and sesquiterpenes from a Bionectria sp. (MSX 47401). J. Nat. Prod., 2013, 76(6), 1007-1015.
[http://dx.doi.org/10.1021/np3008842] [PMID: 23806109]
[19]
Wright, A.D.; Osterhage, C.; König, G.M. Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Org. Biomol. Chem., 2003, 1(3), 507-510.
[http://dx.doi.org/10.1039/b208588g] [PMID: 12926253]
[20]
Loscher, S.; Schobert, R. Total synthesis and absolute configuration of epicoccamide D, a naturally occurring mannosylated 3-acyltetramic acid. Chemistry, 2013, 19(32), 10619-10624.
[http://dx.doi.org/10.1002/chem.201301914] [PMID: 23801547]
[21]
Lacey, R.N. Derivatives of acetoacetic acid. Part VII. α-Acetyltetramic acids. J. Chem. Soc., 1954, 1954, 850-854.
[http://dx.doi.org/10.1039/JR9540000850]
[22]
Lacey, R.N. Derivatives of acetoacetic acid. Part IV. A new route to α-acetyltetronic acids. J. Chem. Soc., 1954, 1954, 832-839.
[http://dx.doi.org/10.1039/JR9540000832]
[23]
Burke, L.T.; Dixon, D.J.; Ley, S.V.; Rodríguez, F. Total synthesis of the Fusarium toxin equisetin. Org. Biomol. Chem., 2005, 3(2), 274-280.
[http://dx.doi.org/10.1039/B411350K] [PMID: 15632969]
[24]
Lemieux, R.U.; Morgan, A.R. The preparation and configurations of tri-o-acetyl-α-d-glucopyranose 1,2-(orthoesters). Can. J. Chem., 1965, 43(8), 2198-2204.
[http://dx.doi.org/10.1139/v65-297]
[25]
Adinolfi, M.; Iadonisi, A.; Ravidà, A.; Schiattarella, M. Efficient and direct synthesis of saccharidic 1,2-ethylidenes, orthoesters, and glycals from peracetylated sugars via the in situ generation of glycosyl iodides with I2/Et3SiH. Tetrahedron Lett., 2003, 44(43), 7863-7866.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.022]
[26]
Zhu, C.; Peng, W.; Li, Y.; Han, X.; Yu, B. Synthesis of 3-O-(beta-D-xylopyranosyl-(1-->2)-beta-D-glucopyranosyl)-3′-O-(beta-D-glucopyranosyl)tamarixetin, the putative structure of aescuflavoside A from the seeds of Aesculus chinensis. Carbohydr. Res., 2006, 341(8), 1047-1051.
[http://dx.doi.org/10.1016/j.carres.2006.02.036] [PMID: 16580652]
[27]
Schobert, R.; Dietrich, M.; Mullen, G.; Urbina-Gonzalez, J.M. Phosphorus ylide based functionalizations of tetronic and tetramic acids. Synthesis, 2006, 1(22), 3902-3914.
[http://dx.doi.org/10.1055/s-2006-950310]
[28]
Schobert, R.; Jagusch, C. An expedient synthesis of 3-acyltetramic acids of the melophlin family from α-aminoesters and immobilized Ph3PCCO. Tetrahedron, 2005, 61(9), 2301-2307.
[http://dx.doi.org/10.1016/j.tet.2005.01.036]
[29]
Jones, R.C.F.; Begley, M.J.; Peterson, G.E.; Sumaria, S. Acylation of pyrrolidine-2,4-diones: a synthesis of 3-acyltetramic acids. X-Ray molecular structure of 3-[1-(difluoroboryloxy)ethylidene]-5-isopropyl-1-methyl-pyrrolidine-2,4-dione. J. Chem. Soc., Perkin Trans. 1, 1990, 1990(7), 1959-1968.
[http://dx.doi.org/10.1039/p19900001959]
[30]
Yajima, A.; Kawajiri, A.; Mori, A.; Katsuta, R.; Nukada, T. Total synthesis of epicoccamides A and D via olefin cross-metathesis. Tetrahedron Lett., 2014, 55(31), 4350-4354.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.040]
[31]
Tanaka, A.; Usuki, T. Synthesis of the peptide moiety of the jamaicamides. Tetrahedron Lett., 2011, 52(39), 5036-5038.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.078]
[32]
Crich, D.; Smith, M. 1-Benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride: a potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J. Am. Chem. Soc., 2001, 123(37), 9015-9020.
[http://dx.doi.org/10.1021/ja0111481] [PMID: 11552809]
[33]
Kohno, J.; Nishio, M.; Sakurai, M.; Kawano, K.; Hiramatsu, H.; Kameda, N.; Kishi, N.; Yamashita, T.; Okuda, T.; Komatsubara, S. Isolation and structure determination of TMC-151s: Novel polyketide antibiotics from Gliocladium catenulatum Gilman & Abbott TC 1280. Tetrahedron, 1999, 55(25), 7771-7786.
[http://dx.doi.org/10.1016/S0040-4020(99)00408-1]
[34]
Kohno, J.; Nishio, M.; Kishi, N.; Okuda, T.; Komatsubara, S. Biosynthesis of the fungal polyketide antibiotics TMC-151s: origin of the carbon skeleton. J. Antibiot. (Tokyo), 2000, 53(11), 1301-1304.
[http://dx.doi.org/10.7164/antibiotics.53.1301] [PMID: 11213292]
[35]
Okuda, T.; Kohno, J.; Kishi, N.; Asai, Y.; Nishio, M.; Komatsubara, S. Production of TMC- 151, TMC- 154 and TMC- 171, a new class of antibiotics, is specific to ‘Gliocladium roseum’ group. Mycoscience, 2000, 41(3), 239-253.
[http://dx.doi.org/10.1007/BF02489678]
[36]
Kohno, J.; Asai, Y.; Nishio, M.; Sakurai, M.; Kawano, K.; Hiramatsu, H.; Kameda, N.; Kishi, N.; Okuda, T.; Komatsubara, S. TMC-171A,B,C and TMC-154, novel polyketide antibiotics produced by Gliocladium sp. TC 1304 and TC 1282. J. Antibiot. (Tokyo), 1999, 52(12), 1114-1123.
[http://dx.doi.org/10.7164/antibiotics.52.1114] [PMID: 10695675]
[37]
Omura, S.; Tomoda, H.; Tabata, N.; Ohyama, Y.; Abe, T.; Namikoshi, M. Roselipins, novel fungal metabolites having a highly methylated fatty acid modified with a mannose and an arabinitol. J. Antibiot. (Tokyo), 1999, 52(6), 586-589.
[http://dx.doi.org/10.7164/antibiotics.52.586] [PMID: 10470686]
[38]
Kasai, Y.; Komatsu, K.; Shigemori, H.; Tsuda, M.; Mikami, Y.; Kobayashi, J. Cladionol A, a polyketide glycoside from marine-derived fungus Gliocladium species. J. Nat. Prod., 2005, 68(5), 777-779.
[http://dx.doi.org/10.1021/np050046b] [PMID: 15921429]
[39]
Freinkman, E.; Oh, D.C.; Scott, J.J.; Currie, C.R.; Clardy, J. Bionectriol A, a polyketide glycoside from the fungus Bionectria sp. associated with the fungus-growing ant, Apterostigma dentigerum. Tetrahedron Lett., 2009, 50(49), 6834-6837.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.120] [PMID: 20160864]
[40]
Yin, T.P.; Xing, Y.; Cai, L.; Yu, J.; Luo, P.; Ding, Z.T. A new polyketide glycoside from the rhizospheric Clonostachys rogersoniana associated with Panax notoginseng. J. Asian Nat. Prod. Res., 2017, 19(12), 1258-1263.
[http://dx.doi.org/10.1080/10286020.2017.1314271] [PMID: 28397534]
[41]
Zhang, S.; Zhu, J.; Liu, T.; Samra, S.; Pan, H.; Bai, J.; Hua, H.; Bechthold, A. Myrothecoside, a novel glycosylated polyketide from the terrestrial fungus Myrothecium sp. GS‐17. Helv. Chim. Acta, 2016, 99, 215-219.
[http://dx.doi.org/10.1002/hlca.201500218]
[42]
Matsui, R.; Seto, K.; Sato, Y.; Suzuki, T.; Nakazaki, A.; Kobayashi, S. Convergent total synthesis of (+)-TMC-151C by a vinylogous Mukaiyama aldol reaction and ring-closing metathesis. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 680-683.
[http://dx.doi.org/10.1002/anie.201006230] [PMID: 21226152]
[43]
Crich, D.; Karatholuvhu, M.S. Application of the 4-trifluoromethylbenzenepropargyl ether group as an unhindered, electron deficient protecting group for stereoselective glycosylation. J. Org. Chem., 2008, 73(13), 5173-5176.
[http://dx.doi.org/10.1021/jo7023398] [PMID: 18529028]
[44]
Roush, W.R.; Ando, K.; Powers, D.B.; Palkowitz, A.D.; Halterman, R.L. Asymmetric synthesis using diisopropyl tartrate modified (E)- and (Z)-crotylboronates: preparation of the chiral crotylboronates and reactions with achiral aldehydes. J. Am. Chem. Soc., 1990, 112(17), 6339-6348.
[http://dx.doi.org/10.1021/ja00173a023]
[45]
Roush, W.R.; Palkowitz, A.D.; Ando, K. Acyclic diastereoselective synthesis using tartrate ester-modified crotylboronates. Double asymmetric reactions with. alpha.-methyl chiral aldehydes and synthesis of the C(19)-C(29) segment of rifamycin S. J. Am. Chem. Soc., 1990, 112(17), 6348-6359.
[http://dx.doi.org/10.1021/ja00173a024]
[46]
Matsui, R.; Seto, K.; Fujita, K.; Suzuki, T.; Nakazaki, A.; Kobayashi, S. Unusual E-selective ring-closing metathesis to form eight-membered rings. Angew. Chem. Int. Ed. Engl., 2010, 49(52), 10068-10073.
[http://dx.doi.org/10.1002/anie.201004746] [PMID: 20922736]
[47]
Evans, P.A.; Murthy, V.S. Temporary silicon-tethered ring-closing metathesis approach to C2-symmetrical 1,4-diols: asymmetric synthesis of D-altritol. J. Org. Chem., 1998, 63(20), 6768-6769.
[http://dx.doi.org/10.1021/jo9811524] [PMID: 11672287]
[48]
Chatterjee, A.K.; Choi, T-L.; Sanders, D.P.; Grubbs, R.H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc., 2003, 125(37), 11360-11370.
[http://dx.doi.org/10.1021/ja0214882] [PMID: 16220959]
[49]
Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc., 2000, 122(34), 8168-8179.
[http://dx.doi.org/10.1021/ja001179g]
[50]
McGlacken, G.P.; Fairlamb, I.J. 2-Pyrone natural products and mimetics: isolation, characterisation and biological activity. Nat. Prod. Rep., 2005, 22(3), 369-385.
[http://dx.doi.org/10.1039/b416651p] [PMID: 16010346]
[51]
Shu, Y-Z.; Ye, Q.; Li, H.; Kadow, K.F.; Hussain, R.A.; Huang, S.; Gustavson, D.R.; Lowe, S.E.; Chang, L-P.; Pirnik, D.M.; Kodukula, K. Orevactaene,1 a novel binding inhibitor of HIV-1 rev protein to Rev Response Element (RRE) from Epicoccum nigrum WC47880. Bioorg. Med. Chem. Lett., 1997, 7(17), 2295-2298.
[http://dx.doi.org/10.1016/S0960-894X(97)00407-1]
[52]
Kimura, J.; Furui, M.; Kanda, M.; Sugiyama, M. Japan Patent 2002047281A, February 12,. 2002.
[53]
Peng, J.; Jiao, J.; Li, J.; Wang, W.; Gu, Q.; Zhu, T.; Li, D. Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum sp. JJY40. Bioorg. Med. Chem. Lett., 2012, 22(9), 3188-3190.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.044] [PMID: 22487178]
[54]
Goel, A.; Ram, V.J. Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron, 2009, 65(38), 7865-7913.
[http://dx.doi.org/10.1016/j.tet.2009.06.031]
[55]
Calder, C.; Ford, S.; Selwood, A.I.; Van Ginkel, R.; Wilkins, A.L. Anti-microbial compositions.Worldwide Patent WO2012023865A1, February 23,, 2012.
[56]
Van Ginkel, R.; Selwood, A.I.; Wilkins, A.L.; Ford, S.; Calder, C.U.S. Patent 20120108526A1, May 3,, 2012.
[57]
Van Ginkel, R.; Selwood, A.I.; Wilkins, A.L.; Ford, S.; Calder, C. Anti-microbial compounds containing compounds with a sugar substituent. New Zealand Patent 587490A, March 28,, 2013.
[58]
Van Ginkel, R.; Selwood, A.I.; Wilkins, A.L.; Ford, S. Anti-microbial compositions.U.S. Patent 20140357580A1, December 4,, 2014.
[59]
Preindl, J.; Schulthoff, S.; Wirtz, C.; Lingnau, J.; Fürstner, A. Polyunsaturated C-glycosidic 4-hydroxy-2-pyrone derivatives: total synthesis shows that putative orevactaene is likely identical with Epipyrone A. Angew. Chem. Int. Ed. Engl., 2017, 56(26), 7525-7530.
[http://dx.doi.org/10.1002/anie.201702189] [PMID: 28557174]
[60]
McDonald, F.E.; Reddy, K.S.; Díaz, Y. Stereoselective glycosylations of a family of 6-deoxy-1,2-glycals generated by catalytic alkynol cycloisomerization. J. Am. Chem. Soc., 2000, 122(18), 4304-4309.
[http://dx.doi.org/10.1021/ja994229u]
[61]
Fürstner, A.; Davies, P.W. Catalytic carbophilic activation: catalysis by platinum and gold pi acids. Angew. Chem. Int. Ed. Engl., 2007, 46(19), 3410-3449.
[http://dx.doi.org/10.1002/anie.200604335] [PMID: 17427893]
[62]
Chaładaj, W.; Corbet, M.; Fürstner, A. Total synthesis of neurymenolide A based on a gold-catalyzed synthesis of 4-hydroxy-2-pyrones. Angew. Chem. Int. Ed. Engl., 2012, 51(28), 6929-6933.
[http://dx.doi.org/10.1002/anie.201203180] [PMID: 22674881]
[63]
Preindl, J.; Jouvin, K.; Laurich, D.; Seidel, G.; Fürstner, A. Gold- or Silver-catalyzed syntheses of pyrones and pyridine derivatives: mechanistic and synthetic aspects. Chemistry, 2016, 22(1), 237-247.
[http://dx.doi.org/10.1002/chem.201503403] [PMID: 26594016]
[64]
Coombs, J.R.; Zhang, L.; Morken, J.P. Synthesis of vinyl boronates from aldehydes by a practical boron-Wittig reaction. Org. Lett., 2015, 17(7), 1708-1711.
[http://dx.doi.org/10.1021/acs.orglett.5b00480] [PMID: 25799147]
[65]
Nicolaou, K.C.; Mitchell, H.J. Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew. Chem. Int. Ed. Engl., 2001, 40(9), 1576-1624.
[http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1576:AID-ANIE15760>3.0.CO;2-G] [PMID: 11353467]
[66]
Odds, F.C. Sordarin antifungal agents. Expert Opin. Ther. Pat., 2005, 11, 283-294.
[http://dx.doi.org/10.1517/13543776.11.2.283]
[67]
Sigg, H.P.; Stoll, C. Antibiotic sl 2266. U.S. Patent 3432598A, March 11,, 1969.
[68]
Hauser, D.; Sigg, H.P. Isolation and decomposition of sordarin. Helv. Chim. Acta, 1971, 54(4), 1178-1190.
[http://dx.doi.org/10.1002/hlca.19710540427] [PMID: 5095217]
[69]
Vasella, A. Uber ein neuartriges diterpen aus Sardarina araneosa Cain.PhD Thesis, Edgenoessischen Technischen Hochschule: Zurich, 1972.
[70]
Chiba, S.; Kitamura, M.; Narasaka, K. Synthesis of (-)-sordarin. J. Am. Chem. Soc., 2006, 128(21), 6931-6937.
[http://dx.doi.org/10.1021/ja060408h] [PMID: 16719473]
[71]
Simmons, H.E.; Smith, R.D. A new synthesis of cyclopropanes from olefins. J. Am. Chem. Soc., 1958, 80(19), 5323-5324.
[http://dx.doi.org/10.1021/ja01552a080]
[72]
Tsuji, J.; Minami, I. New synthetic reactions of allyl alkyl carbonates, allyl. beta.-keto carboxylates, and allyl vinylic carbonates catalyzed by palladium complexes. Acc. Chem. Res., 1987, 20(4), 140-145.
[http://dx.doi.org/10.1021/ar00136a003]
[73]
Tsuji, J. New general synthetic methods involving π-allylpalladium complexes as intermediates and neutral reaction conditions. Tetrahedron, 1986, 42(16), 4361-4401.
[http://dx.doi.org/10.1016/S0040-4020(01)87277-X]
[74]
Iwasawa, N.; Kato, T.; Narasaka, K. A convenient method for dihydroxylation of olefins by the combined use of osmium tetroxide and dihydroxyphenyiborane. Chem. Lett., 1988, 17(10), 1721-1724.
[http://dx.doi.org/10.1246/cl.1988.1721]
[75]
Nicolaou, K.C.; Rodríguez, R.M.; Mitchell, H.J.; Suzuki, H.; Fylaktakidou, K.C.; Baudoin, O.; van Delft, F.L. Total synthesis of everninomicin 13,384-1--Part 1: retrosynthetic analysis and synthesis of the A1B(A)C fragment. Chemistry, 2000, 6(17), 3095-3115.
[http://dx.doi.org/10.1002/1521-3765(20000901)6:17<3095:AID-CHEM3095>3.0.CO;2-4] [PMID: 11002992]
[76]
David, S.; Thieffry, A.; Veyrières, A. A mild procedure for the regiospecific benzylation and allylation of polyhydroxy-compounds via their stannylene derivatives in non-polar solvents. J. Chem. Soc., Perkin Trans. 1, 1981, 1981, 1796-1801.
[http://dx.doi.org/10.1039/P19810001796]
[77]
Thadhani1, V.M.; Choudhary, M.I.; Khan, S.; Karunaratne, V. Antimicrobial and toxicological activities of some depsides and depsidones. J. Natl. Sci. Found. Sri Lanka, 2012, 40, 43-48.
[http://dx.doi.org/10.4038/jnsfsr.v40i1.4167]
[78]
Ko, H.R.; Kim, B.Y.; Oh, W.K.; Kang, D.O.; Lee, H.S.; Koshino, H.; Osada, H.; Mheen, T.I.; Ahn, J.S. CRM646-A and -B, novel fungal metabolites that inhibit heparinase. J. Antibiot. (Tokyo), 2000, 53(2), 211-214.
[http://dx.doi.org/10.7164/antibiotics.53.211] [PMID: 10805586]
[79]
Ahn, J.S.; Kim, B.Y.; Oh, W.K.; Mheen, T.I.; Ahn, S.C.; Kang, D.O.; Ko, H.R.; Kim, H.M. A new fungal strain Acremonium sp. mt70646 (kctc 8973p), novel compounds produced by this strain and their use. World Patent WO 2001046385, June 28,, 2001.
[80]
Wang, P.; Zhang, Z.; Yu, B. Total synthesis of CRM646-A and -B, two fungal glucuronides with potent heparinase inhibition activities. J. Org. Chem., 2005, 70(22), 8884-8889.
[http://dx.doi.org/10.1021/jo051384k] [PMID: 16238322]
[81]
Nakanishi, S.; Ando, K.; Kawamoto, I.; Kase, H. KS-501 and KS-502, new inhibitors of Ca2+ and calmodulin-dependent cyclic-nucleotide phosphodiesterase from Sporothrix sp. J. Antibiot. (Tokyo), 1989, 42(7), 1049-1055.
[http://dx.doi.org/10.7164/antibiotics.42.1049] [PMID: 2546910]
[82]
Yasuzawa, T.; Saitoh, Y.; Sano, H. Structures of KS-501 and KS-502, the new inhibitors of Ca2+ and calmodulin-dependent cyclic nucleotide phosphodiesterase. J. Antibiot. (Tokyo), 1990, 43(4), 336-343.
[http://dx.doi.org/10.7164/antibiotics.43.336] [PMID: 2161817]
[83]
Hait, W.N.; Gesmonde, J.; Cheng, E. Effects of KS-501, KS-502 and their enantiomers on calmodulin-sensitive enzyme activity and cellular proliferation. Biochem. Pharmacol., 1995, 50(1), 69-74.
[http://dx.doi.org/10.1016/0006-2952(95)00105-9] [PMID: 7605347]
[84]
Dushin, R.G.; Danishefsky, S.J. Total syntheses of KS-501, KS-502, and their enantiomers. J. Am. Chem. Soc., 1992, 114(2), 655-659.
[http://dx.doi.org/10.1021/ja00028a035]
[85]
Schüffler, A.; Liermann, J.C.; Kolshorn, H.; Opatz, T.; Anke, T. New caloporoside derivatives and their inhibition of fungal spore germination. Z. Natforsch. C J. Biosci., 2009, 64(7-8), 521-525.
[http://dx.doi.org/10.1515/znc-2009-7-810] [PMID: 19791504]
[86]
Weber, W.; Schu, P.; Anke, T.; Velten, R.; Steglich, W. Caloporoside, a new inhibitor of phospholipases C from Caloporus dichrous (Fr.). Ryv. J. Antibiot. (Tokyo), 1994, 47(11), 1188-1194.
[http://dx.doi.org/10.7164/antibiotics.47.1188] [PMID: 8002380]
[87]
Shan, R.; Anke, H.; Nielsen, M.; Sterner, O.; Witt, M.R. The isolation of two new fungal inhibitors of 35S-TBPS binding to the brain GABAA/benzodiazepine chloride channel receptor complex. Nat. Prod. Lett., 1994, 4, 171-178.
[http://dx.doi.org/10.1080/10575639408043901]
[88]
Eder, C.; Kurz, M.; Brönstrup, M.; Toti, L. Fermentative production of caloporoside derivatives. Worldwide Patent WO 02072110A1, September 19, 2002.
[89]
Harada, H.; Nakata, T.; Hirota-Takahata, Y.; Tanaka, I.; Nakajima, M.; Takahashi, M. F-16438s, novel binding inhibitors of CD44 and hyaluronic acid. I. Establishment of an assay method and biological activity. J. Antibiot. (Tokyo), 2006, 59(12), 770-776.
[http://dx.doi.org/10.1038/ja.2006.101] [PMID: 17323643]
[90]
Fürstner, A.; Konetzki, I. Total synthesis of caloporoside. J. Am. Chem. Soc., 1998, 63(9), 3072-3080.
[91]
Tokunaga, M.; Larrow, J.F.; Kakiuchi, F.; Jacobsen, E.N. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science, 1997, 277(5328), 936-938.
[http://dx.doi.org/10.1126/science.277.5328.936] [PMID: 9252321]
[92]
Devos, A.; Remion, J.; Frisque-Hesbain, A-M.; Colens, A.; Ghosez, L. Synthesis of acyl halides under very mild conditions. J. Chem. Soc. Chem. Commun., 1979, (24), 1180-1181.
[http://dx.doi.org/10.1039/c39790001180]
[93]
Tatsuta, K.; Yasuda, S. Total synthesis of deacetyl-caloporoside, a novel inhibitor of the GABAA receptor ion channel. Tetrahedron Lett., 1996, 37(14), 2453-2456.
[http://dx.doi.org/10.1016/0040-4039(96)00316-4]
[94]
Tatsuta, K.; Nakagawa, A.; Maniwa, S.; Kinoshita, M. Stereospecific total synthesis and absolute configuration of a macrocyclic lactone antibiotic, A26771B. Tetrahedron Lett., 1980, 21(15), 1479-1482.
[http://dx.doi.org/10.1016/S0040-4039(00)92751-5]
[95]
Wakao, M.; Suda, Y. Synthesis of glycolipids. Glycoscience; Coté, G.; Flitsch, S.; Ito, Y.; Kondo, H.; Nishimura, S-I; Yu, B., Ed.; Springer-Verlag: Berlin, 2008, pp. 1630-1660.
[http://dx.doi.org/10.1007/978-3-540-30429-6_40]
[96]
Boros, C.; Katz, B.; Mitchell, S.; Pearce, C.; Swinbank, K.; Taylor, D. Emmyguyacins A and B: unusual glycolipids from a sterile fungus species that inhibit the low-pH conformational change of hemagglutinin A during replication of influenza virus. J. Nat. Prod., 2002, 65(2), 108-114.
[http://dx.doi.org/10.1021/np010345a] [PMID: 11858739]
[97]
Jana, S.; Sarpe, V.A.; Kulkarni, S.S. Total synthesis of Emmyguyacins A and B, potential fusion inhibitors of influenza virus. Org. Lett., 2018, 20(21), 6938-6942.
[http://dx.doi.org/10.1021/acs.orglett.8b03073] [PMID: 30350678]
[98]
Bassily, R.W.; el-Sokkary, R.I.; Silwanis, B.A.; Nematalla, A.S.; Nashed, M.A. An improved synthesis of 4-azido-4-deoxy- and 4-amino-4-deoxy-alpha,alpha-trehalose and their epimers. Carbohydr. Res., 1993, 239, 197-207.
[http://dx.doi.org/10.1016/0008-6215(93)84215-R] [PMID: 8457995]
[99]
Sanapala, S.R.; Kulkarni, S.S. Expedient route to access rare deoxy amino L-sugar building blocks for the assembly of bacterial glycoconjugates. J. Am. Chem. Soc., 2016, 138(14), 4938-4947.
[http://dx.doi.org/10.1021/jacs.6b01823] [PMID: 27002789]
[100]
Zhang, X.; MacMillan, D.W.C. Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3–sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc., 2016, 138(42), 13862-13865.
[http://dx.doi.org/10.1021/jacs.6b09533] [PMID: 27718570]
[101]
Sarpe, V.A.; Kulkarni, S.S. Expeditious synthesis of Mycobacterium tuberculosis sulfolipids SL-1 and Ac2SGL analogues. Org. Lett., 2014, 16(21), 5732-5735.
[http://dx.doi.org/10.1021/ol5027987] [PMID: 25322198]
[102]
Sugiura, R.; Kita, A.; Tsutsui, N.; Muraoka, O.; Hagihara, K.; Umeda, N.; Kunoh, T.; Takada, H.; Hirose, D. Acremomannolipin A, the potential calcium signal modulator with a characteristic glycolipid structure from the filamentous fungus Acremonium strictum. Bioorg. Med. Chem. Lett., 2012, 22(21), 6735-6739.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.085] [PMID: 23013934]
[103]
Crich, D.; Sun, S. Formation of beta-mannopyranosides of primary alcohols using the sulfoxide method. J. Org. Chem., 1996, 61(14), 4506-4507.
[http://dx.doi.org/10.1021/jo9606517] [PMID: 11667369]
[104]
Crich, D.; Sun, S. Direct chemical synthesis of β-mannopyranosides and other glycosides via glycosyl triflates. Tetrahedron, 1998, 54(29), 8321-8348.
[http://dx.doi.org/10.1016/S0040-4020(98)00426-8]
[105]
Tsutsui, N.; Tanabe, G.; Kita, A.; Sugiura, R.; Muraoka, O. The first total synthesis of acremomannolipin A, the potential Ca2+ signal modulator with a characteristic glycolipid structure, isolated from the filamentous fungus Acremonium strictum. Tetrahedron Lett., 2013, 54(6), 451-453.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.128]
[106]
Crich, D.; Jayalath, P.; Hutton, T.K. Enhanced diastereoselectivity in beta-mannopyranosylation through the use of sterically minimal propargyl ether protecting groups. J. Org. Chem., 2006, 71(8), 3064-3070.
[http://dx.doi.org/10.1021/jo0526789] [PMID: 16599600]
[107]
Ekholm, F.S.; Poláková, M.; Pawłowicz, A.J.; Leino, R. Synthesis of divalent 2,2′-linked mannose derivatives by homodimerization. Synthesis, 2009, 2009(04), 567-576.
[http://dx.doi.org/10.1055/s-0028-1083283]
[108]
Kawai, G.; Ikeda, Y. Fruiting-inducing activity of cerebrosides observed with Schizophyllum commune. Biochimica et Biophysica Acta (BBA) -. General Subjects, 1982, 719(3), 612-618.
[http://dx.doi.org/10.1016/0304-4165(82)90252-5]
[109]
Mori, K.; Funaki, Y. Synthesis of (4E,8E,2S,3R,2‘R-N-2’-hydroxyhexadecanoyl-1-O-β-D-glucopyranosyl-9-methyl-4,8-sphingadienine, the fruiting-inducing cerebroside in a basidiomycete schizophyllum commune. Tetrahedron, 1985, 41(12), 2379-2386.
[http://dx.doi.org/10.1016/S0040-4020(01)96633-5]
[110]
Toledo, M.S.; Levery, S.B.; Straus, A.H.; Suzuki, E.; Momany, M.; Glushka, J.; Moulton, J.M.; Takahashi, H.K. Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl (E)-Delta 3-unsaturation in cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry, 1999, 38(22), 7294-7306.
[http://dx.doi.org/10.1021/bi982898z] [PMID: 10353841]
[111]
Zhang, Y.; Wang, S.; Li, X.M.; Cui, C.M.; Feng, C.; Wang, B.G. New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids, 2007, 42(8), 759-764.
[http://dx.doi.org/10.1007/s11745-007-3079-8] [PMID: 17605063]
[112]
Chaudhary, V.; Albacker, L.A.; Deng, S.; Chuang, Y.T.; Li, Y.; Umetsu, D.T.; Savage, P.B. Synthesis of fungal glycolipid asperamide B and investigation of its ability to stimulate natural killer T cells. Org. Lett., 2013, 15(20), 5242-5245.
[http://dx.doi.org/10.1021/ol4024375] [PMID: 24111801]
[113]
Murakami, T.; Hirono, R.; Furusawa, K. Efficient stereocontrolled synthesis of sphingadienine derivatives. Tetrahedron, 2005, 61(39), 9233-9241.
[http://dx.doi.org/10.1016/j.tet.2005.07.066]
[114]
Prévost, S.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V. Total synthesis of symbioramide: a flexible approach for the efficient preparation of structural isomers. Adv. Synth. Catal., 2011, 353(17), 3213-3226.
[http://dx.doi.org/10.1002/adsc.201100579]
[115]
Black, F.J.; Kocienski, P.J. Synthesis of phalluside-1 and Sch II using 1,2-metallate rearrangements. Org. Biomol. Chem., 2010, 8(5), 1188-1193.
[http://dx.doi.org/10.1039/b920285d] [PMID: 20165812]
[116]
Adam, W.; Boland, W.; Hartmann-Schreier, J.; Humpf, H-U.; Lazarus, M.; Saffert, A.; Saha-Möller, C.R.; Schreier, P. A hydroxylation of carboxylic acids with molecular oxygen catalyzed by the α oxidase of peas (Pisum sativum): a novel biocatalytic synthesis of enantiomerically pure (r)-2-hydroxy acids. J. Am. Chem. Soc., 1998, 120(43), 11044-11048.
[http://dx.doi.org/10.1021/ja981252r]
[117]
Adam, W.; Lazarus, M.; Saha-Möller, C.R.; Schreier, P. Biocatalytic synthesis of optically active α-oxyfunctionalized carbonyl compounds. Acc. Chem. Res., 1999, 32(10), 837-845.
[http://dx.doi.org/10.1021/ar980062i]
[118]
Nakagawa, M.; Kodato, S-i.; Nakayama, K.; Hino, T. Total synthesis and determination of absolute configuration of cerebroside B1b and its stereoisomers. Tetrahedron Lett., 1987, 28(50), 6281-6284.
[http://dx.doi.org/10.1016/S0040-4039(01)91352-8]
[119]
Karlsson, K.A.; Pascher, I. Resolution and chromatographic configuration analysis of 2-hydroxy fatty acids. Chem. Phys. Lipids, 1974, 12(2), 65-74.
[http://dx.doi.org/10.1016/0009-3084(74)90046-2] [PMID: 4826918]
[120]
Mori, K.; Funaki, Y. Synthesis of (4E,8E,2S,3R,2‘R)-N-2’-hydroxyhexad-ecanoyl-9-methyl-4,8-sphingadiemine, the ceramide portion of the fruiting-inducing cerebroside in a basidiomycete schizophyllum commune, and its (2R,3S)-isomer. Tetrahedron, 1985, 41(12), 2369-2377.
[http://dx.doi.org/10.1016/S0040-4020(01)96632-3]
[121]
Sugai, T.; Ohta, H. Lipase-catalyzed kinetic resolution of 2-hydroxyhexadecanoic acid and its esters. Agric. Biol. Chem., 1990, 54(12), 3337-3338.
[http://dx.doi.org/10.1080/00021369.1990.10870457]
[122]
Adam, W.; Lazarus, M.; Schmerder, A.; Humpf, H-U.; Saha-Möller, C.R.; Schreier, P. Synthesis of optically active α-hydroxy acids by kinetic resolution through lipase-catalyzed enantioselective acetylation. Eur. J. Org. Chem., 1998, 1998(9), 2013-2018.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199809)1998:9<2013:AID-EJOC2013>3.0.CO;2-S]
[123]
Pansare, S.V.; Huyer, G.; Arnold, L.D.; Vederas, J.C. Synthesis of N-protected α-amino acids from N-(benzyloxycarbonyl)-L-serine via its β-lactone: Nα-(benzyloxycarbonyl)-β-(pyrazol-1-yl)-L-alanine. Org. Synth., 1992, 70, 1.
[http://dx.doi.org/10.1002/0471264180.os070.01]
[124]
Normant, J.F.; Alexakis, A.; Cahiez, G. Action d’organolithiens et organomagnésiens sur la propiolactone en présence de sel cuivreux synthèse d’acides carboxyliques. Tetrahedron Lett., 1980, 21(10), 935-938.
[http://dx.doi.org/10.1016/S0040-4039(00)77743-4]
[125]
Fujisawa, T.; Sato, T.; Kawara, T.; Kawashima, M.; Shimizu, H.; Ito, Y. A three carbon homologation by the ring-opening of β-propiolactones with diorganocuprates. Tetrahedron Lett., 1980, 21(22), 2181-2184.
[http://dx.doi.org/10.1016/S0040-4039(00)78992-1]
[126]
Arnold, L.D.; Drover, J.C.G.; Vederas, J.C. Conversion of serine. beta.-lactones to chiral. alpha.-amino acids by copper-containing organolithium and organomagnesium reagents. J. Am. Chem. Soc., 1987, 109(15), 4649-4659.
[http://dx.doi.org/10.1021/ja00249a031]
[127]
Jarowicki, K.; Kilner, C.; Kocienski, P.J.; Komsta, Z.; Milne, J.E.; Wojtasiewicz, A.; Coombs, V. A synthesis of 1-lithiated glycals and 1-tributylstannyl glycals from 1-phenylsulfinyl glycals via sulfoxide-lithium ligand exchange. Synthesis, 2008, 2008(17), 2747-2763.
[http://dx.doi.org/10.1055/s-2008-1067226]
[128]
Díaz de Vivar, M.E.; Seldes, A.M.; Maier, M.S. Two novel glucosylceramides from gonads and body walls of the Patagonian starfish Allostichaster inaequalis. Lipids, 2002, 37(6), 597-603.
[http://dx.doi.org/10.1007/s11745-002-0938-7] [PMID: 12120959]
[129]
Jin-Ming, G.; Wei-Ming, Z.; She-Qi, Z.; Xing, Z.; An-Ling, Z.; Hui, C.; Yue-Ying, S.; Ming, T. Sphingolipids from the edible fungus Tuber indicum. Eur. J. Lipid Sci. Technol., 2004, 106(12), 815-821.
[http://dx.doi.org/10.1002/ejlt.200401052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy