Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Fungal Biotransformation: An Efficient Approach for Stereoselective Chemical Reactions

Author(s): Valmore Henrique Pereira dos Santos, Dorval Moreira Coelho Neto, Valdemar Lacerda Júnior, Warley de Souza Borges and Eliane de Oliveira Silva*

Volume 24, Issue 24, 2020

Page: [2902 - 2953] Pages: 52

DOI: 10.2174/1385272824999201111203506

Price: $65

Abstract

There is great interest in developing chemical technologies to achieve regioselective and stereoselective reactions since only one enantiomer is required for producing the chiral leads for drug development. These selective reactions are provided by traditional chemical synthetic methods, even under expensive catalysts and long reaction times. Filamentous fungi are efficient biocatalysts capable of catalyzing a wide variety of reactions with significant contributions to the development of clean and selective processes. Although some enzymes have already been employed in isolated forms or as crude protein extracts as catalysts for conducting selective reactions, the use of whole-cell provides advantages regarding cofactor regenerations. It is also possible to carry out conversions at chemically unreactive positions and to perform racemic resolution through microbial transformation. The current literature contains several reports on the biotransformation of different compounds by fungi, which generated chemical analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological interest in the development of stereoselective chemical technologies, this review covers the biotransformations catalyzed by fungi that yielded chiral products with enantiomeric excesses published over the period 2010-2020. This work highlights new approaches for the achievement of a variety of bioactive chiral building blocks, which can be a good starting point for the synthesis of new compounds combining biotransformation and synthetic organic chemistry.

Keywords: Asymmetric center, chiral building blocks, enantiomeric excess, fungal biotransformation, stereoselectivity, whole cell.

Graphical Abstract
[1]
Kanbayashi, N.; Onitsuka, K. Enantioselective synthesis of allylic esters via asymmetric allylic substitution with metal carboxylates using planar-chiral cyclopentadienyl ruthenium catalysts. J. Am. Chem. Soc., 2010, 132(4), 1206-1207.
[http://dx.doi.org/10.1021/ja908456b] [PMID: 20052978]
[2]
Zhan, G.; Du, W.; Chen, Y-C. Switchable divergent asymmetric synthesis via organocatalysis. Chem. Soc. Rev., 2017, 46(6), 1675-1692.
[http://dx.doi.org/10.1039/C6CS00247A] [PMID: 28221384]
[3]
Lin, G-Q.; Sun, X-W. Chiral drugs through asymmetric synthesis. Chiral Drugs; Lin, G.; You, Q; Cheng, J., Ed.; John Wiley & Sons, Inc.: Hoboken, 2011, pp. 29-76.
[http://dx.doi.org/10.1002/9781118075647.ch2]
[4]
Sheldon, R.A.; Woodley, J.M. Role of biocatalysis in sustainable chemistry. Chem. Rev., 2018, 118(2), 801-838.
[http://dx.doi.org/10.1021/acs.chemrev.7b00203] [PMID: 28876904]
[5]
Aldridge, S. Industry backs biocatalysis for greener manufacturing. Nat. Biotechnol., 2013, 31(2), 95-96.
[http://dx.doi.org/10.1038/nbt0213-95] [PMID: 23392497]
[6]
Borges, K.B.; Borges, W. de S.; Durán-Patrón, R.; Pupo, M.T.; Bonato, P.S.; Collado, I.G. Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry, 2009, 20, 385-397.
[http://dx.doi.org/10.1016/j.tetasy.2009.02.009]
[7]
Hegazy, M.E.F.; Mohamed, T.A.; ElShamy, A.I.; Mohamed, A.E.H.H.; Mahalel, U.A.; Reda, E.H.; Shaheen, A.M.; Tawfik, W.A.; Shahat, A.A.; Shams, K.A.; Abdel-Azim, N.S.; Hammouda, F.M. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J. Adv. Res., 2015, 6(1), 17-33.
[http://dx.doi.org/10.1016/j.jare.2014.11.009] [PMID: 25685541]
[8]
Loughlin, W.A. Biotransformations in organic synthesis. Bioresour. Technol., 2000, 74, 49-62.
[http://dx.doi.org/10.1016/S0960-8524(99)00145-5]
[9]
Patel, R.N. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord. Chem. Rev., 2008, 252, 659-701.
[http://dx.doi.org/10.1016/j.ccr.2007.10.031]
[10]
Hawksworth, D.L. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol. Res., 2001, 105, 1422-1432.
[http://dx.doi.org/10.1017/S0953756201004725]
[11]
Nassiri-Koopaei, N.; Faramarzi, M.A. Recent developments in the fungal transformation of steroids. Biocatal. Biotransform., 2015, 33, 1-28.
[http://dx.doi.org/10.3109/10242422.2015.1022533]
[12]
Faber, K. Biotransformations in organic chemistry: a textbook; Springer-Verlag: Berlin, 2004, p. 1953.
[http://dx.doi.org/10.1007/978-3-642-18537-3]
[13]
Koshland, D.E., Jr; Némethy, G.; Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 1966, 5(1), 365-385.
[http://dx.doi.org/10.1021/bi00865a047] [PMID: 5938952]
[14]
Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding; Freeman: New York, 1998.
[15]
Straathof, A.J.; Panke, S.; Schmid, A. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol., 2002, 13(6), 548-556.
[http://dx.doi.org/10.1016/S0958-1669(02)00360-9] [PMID: 12482513]
[16]
Corrêa, R.C.G.; Rhoden, S.A.; Mota, T.R.; Azevedo, J.L.; Pamphile, J.A.; de Souza, C.G.M. Polizeli, Mde.L.; Bracht, A.; Peralta, R.M. Endophytic fungi: expanding the arsenal of industrial enzyme producers. J. Ind. Microbiol. Biotechnol., 2014, 41(10), 1467-1478.
[http://dx.doi.org/10.1007/s10295-014-1496-2] [PMID: 25117531]
[17]
Yousuf, M.; Jamil, W.; Mammadova, K. Microbial Bioconversion: a regio-specific method for novel drug design and toxicological study of metabolites. Curr. Pharm. Biotechnol., 2019, 20(14), 1156-1162.
[http://dx.doi.org/10.2174/1389201020666190618115821] [PMID: 31258075]
[18]
Kristan, K.; Stojan, J.; Adamski, J.; Lanišnik Rižner, T. Rational design of novel mutants of fungal 17β-hydroxysteroid dehydrogenase. J. Biotechnol., 2007, 129(1), 123-130.
[http://dx.doi.org/10.1016/j.jbiotec.2006.11.025] [PMID: 17196285]
[19]
Wolken, W.A.M.; Tramper, J.; van der Werf, M.J. What can spores do for us? Trends Biotechnol., 2003, 21(8), 338-345.
[http://dx.doi.org/10.1016/S0167-7799(03)00170-7] [PMID: 12902170]
[20]
Al-Fouti, K.; Hanson, J.R. The Biotransformation of 4-oxa- and 6-oxa-5a-androstan-17-one by Mucor plumbeus. J. Chem. Res., 2002, 2002, 570-571.
[http://dx.doi.org/10.3184/030823402103170808]
[21]
Silva, E.O.; Furtado, N.A.J.C.; Aleu, J.; Collado, I.G. Non-terpenoid biotransformations by Mucor species. Phytochem. Rev., 2015, 14, 745-764.
[http://dx.doi.org/10.1007/s11101-014-9374-0]
[22]
Ahmad, M.S.; Zafar, S.; Bibi, M.; Bano, S. Atia-Tul-Wahab; Atta-Ur-Rahman; Choudhary, M.I. Biotransformation of androgenic steroid mesterolone with Cunninghamella blakesleeana and Macrophomina phaseolina. Steroids, 2014, 82, 53-59.
[http://dx.doi.org/10.1016/j.steroids.2014.01.001] [PMID: 24462640]
[23]
Ahmad, M.S.; Farooq, R.; Hussain, N. Atia-tul-Wahab; Atta-ur-Rahman; Choudhary, M.I. Three new analogues of androgenic drug mesterolone through biotransformation with Cunninghamella blakseleeana. J. Mol. Catal., B Enzym., 2016, 133, S395-S399.
[http://dx.doi.org/10.1016/j.molcatb.2017.03.001]
[24]
Ahmad, M.S.; Yousuf, S. Atia-tul-Wahab; Jabeen, A.; Atta-ur-Rahman; Choudhary, M.I. Biotransformation of anabolic compound methasterone with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini, and TNF-〈 inhibitory effect of transformed products. Steroids, 2017, 128, 75-84.
[http://dx.doi.org/10.1016/j.steroids.2017.04.001] [PMID: 28404456]
[25]
Farooq, R.; Hussain, N.; Yousuf, S.; Atia-tul-Wahab, A.W.; Ahmad, M.S.; Atta-ur-Rahman, A.R.; Choudhary, M.I. Microbial transformation of mestanolone by Macrophomina phaseolina and Cunninghamella blakesleeana and anticancer activities of the transformed products. RSC Advances, 2018, 8, 21985-21992.
[http://dx.doi.org/10.1039/C8RA01309H]
[26]
Siddiqui, M. Atia-tul-Wahab; Jabeen, A.; Wang, Y.; Wang, W.; Atta-ur-Rahman; Choudhary, M.I. Whole-cell fungal-mediated structural transformation of anabolic drug metenolone acetate into potent anti-inflammatory metabolites. J. Adv. Res., 2020, 24, 69-78.
[http://dx.doi.org/10.1016/j.jare.2020.02.009] [PMID: 32195009]
[27]
Hussain, Z.; Dastagir, N.; Hussain, S.; Jabeen, A.; Zafar, S.; Malik, R.; Bano, S.; Wajid, A.; Choudhary, M.I. Aspergillus niger-mediated biotransformation of methenolone enanthate, and immunomodulatory activity of its transformed products. Steroids, 2016, 112, 68-73.
[http://dx.doi.org/10.1016/j.steroids.2016.04.007] [PMID: 27133901]
[28]
Aziz, A.; Bano, S. Atia-tul-Wahab; Choudhary, M.I. Microbial transformation of oral contraceptive ethisterone by Aspergillus niger and Cunninghamella blakesleeana. Steroids, 2020, 154108467
[http://dx.doi.org/10.1016/j.steroids.2019.108467] [PMID: 31400394]
[29]
Kudaibergenova, B.M.; Wahab, A.T.; Siddiqui, M.; Abilov, Z.A.; Choudhary, M.I. A new metabolite from Cunninghamella blakesleeana-mediated biotransformation of an oral contraceptive drug, levonorgestrel. Nat. Prod. Res., 2019, 2019, 1-4.
[http://dx.doi.org/10.1080/14786419.2019.1655018] [PMID: 31845608]
[30]
Shah, S.A.A.; Sultan, S.; Zaimi Bin Mohd Noor, M. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum. J. Mol. Struct., 2013, 1042, 118-122.
[http://dx.doi.org/10.1016/j.molstruc.2013.03.046]
[31]
Kozłowska, E.; Hoc, N.; Sycz, J.; Urbaniak, M.; Dymarska, M.; Grzeszczuk, J.; Kostrzewa-Susłow, E.; Stępień, Ł.; Pląskowska, E.; Janeczko, T. Biotransformation of steroids by entomopathogenic strains of Isaria farinosa. Microb. Cell Fact., 2018, 17(1), 71.
[http://dx.doi.org/10.1186/s12934-018-0920-0] [PMID: 29753319]
[32]
Wu, Y.; Li, H.; Zhang, X.M.; Gong, J.S.; Rao, Z.M.; Shi, J.S.; Zhang, X.J.; Xu, Z.H. Efficient hydroxylation of functionalized steroids by Colletotrichum lini ST-1. J. Mol. Catal., B Enzym., 2015, 120, 111-118.
[http://dx.doi.org/10.1016/j.molcatb.2015.07.003]
[33]
Janeczko, T.; Świzdor, A.; Dmochowska-Gładysz, J.; Białońska, A.; Ciunik, Z.; Kostrzewa-Susłow, E. Novel metabolites of dehydroepiandrosterone and progesterone obtained in Didymosphearia igniaria KCH 6670 culture. J. Mol. Catal., B Enzym., 2012, 82, 24-31.
[http://dx.doi.org/10.1016/j.molcatb.2012.05.009]
[34]
Yildirim, K.; Saran, H.; Dolu, O.F.; Kuru, A. Biotransformation of some steroids by Mucor hiemalis MRC 70325. J. Chem. Res., 2013, 37, 566-569.
[http://dx.doi.org/10.3184/174751913X13745069090242]
[35]
Yildirim, K.; Kuru, A.; Yılmaz, Ş. Biotransformation of testosterone by Cladosporium sphaerospermum. Biocatal. Biotransform., 2019, 37, 409-413.
[http://dx.doi.org/10.1080/10242422.2019.1583747]
[36]
Ghasemi, S.; Mohajeri, M.; Habibi, Z. Biotransformation of testosterone and testosterone heptanoate by four filamentous fungi. Steroids, 2014, 92, 7-12.
[http://dx.doi.org/10.1016/j.steroids.2014.09.002] [PMID: 25223562]
[37]
Kozłowska, E.; Dymarska, M.; Kostrzewa-Susłow, E.; Janeczko, T. Isaria fumosorosea KCh J2 entomopathogenic strain as an effective biocatalyst for steroid compound transformations. Molecules, 2017, 22(9), 1511.
[http://dx.doi.org/10.3390/molecules22091511] [PMID: 28891949]
[38]
Torshabi, M.; Badiee, M.; Faramarzi, M.A.; Rastegar, H.; Forootanfar, H.; Mohit, E. Biotransformation of methyltestosterone by the filamentous fungus Mucor racemosus. Chem. Nat. Compd., 2011, 47, 59-63.
[http://dx.doi.org/10.1007/s10600-011-9830-7]
[39]
Yildirim, K.; Ayhan, C. Biotransformation of 19-nortestosterone by Aspergillus wentii MRC 200316. J. Chem. Res., 2012, 36, 541-542.
[http://dx.doi.org/10.3184/174751912X13418486956512]
[40]
Siddiqui, M.; Ahmad, M.S.; Wahab, A.T.; Yousuf, S.; Fatima, N.; Naveed Shaikh, N.; Rahman, A.U.; Choudhary, M.I. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites. PLoS One, 2017, 12(2), 1.
[http://dx.doi.org/10.1371/journal.pone.0171476] [PMID: 28234904]
[41]
Yousefi, M.; Mohammadi, M.; Habibi, Z.; Shafiee, A. Biotransformation of progesterone by Acremonium chrysogenum and Absidia griseolla var. igachii. Biocatal. Biotransform., 2010, 28, 254-258.
[http://dx.doi.org/10.3109/10242422.2010.500723]
[42]
Nickavar, B.; Vahidi, H.; Eslami, M. An efficient biotransformation of progesterone into 11〈-hydroxyprogesterone by Rhizopus microsporus var. oligosporus. Z. Natforsch. C J. Biosci., 2018, 74(1-2), 9-15.
[http://dx.doi.org/10.1515/znc-2018-0092] [PMID: 30367812]
[43]
Habibi, Z.; Yousefi, M.; Ghanian, S.; Mohammadi, M.; Ghasemi, S. Biotransformation of progesterone by Absidia griseolla var. igachii and Rhizomucor pusillus. Steroids, 2012, 77(13), 1446-1449.
[http://dx.doi.org/10.1016/j.steroids.2012.08.010] [PMID: 22974825]
[44]
Mohamed, S.S.; El-Refai, A.M.H.; El-Raoof Sallam, L.A.; Abo-Zied, K.M.; Hashem, A.G.M.; Ali, H.A. Biotransformation of progesterone to hydroxysteroid derivatives by whole cells of Mucor racemosus. Malays. J. Microbiol., 2013, 9, 237-244.
[http://dx.doi.org/10.21161/mjm.49213]
[45]
Savinova, O.S.; Solyev, P.N.; Vasina, D.V.; Tyazhelova, T.V.; Fedorova, T.V.; Savinova, T.S. Biotransformation of progesterone by Aspergillus nidulans VKPM F-1069 (wild type). Steroids, 2019, 149108421
[http://dx.doi.org/10.1016/j.steroids.2019.05.013] [PMID: 31176657]
[46]
Ahmad, M.S.; Zafar, S.; Yousuf, S.; Wahab, A.T.; Rahman, A.U.; Choudhary, M.I. Biotransformation of 6-dehydroprogesterone with Aspergillus niger and Gibberella fujikuroi. Steroids, 2016, 112, 62-67.
[http://dx.doi.org/10.1016/j.steroids.2016.04.008] [PMID: 27133903]
[47]
Al-Maruf, M.A.; Khan, N.T.; Saki, M.A.A.; Choudhary, M.I.; Ali, M.U.; Islam, M.A. Biotransformation of 11-ketoprogesterone by filamentous fungus, Fusarium lini. J. Sci. Res., 2011, 3, 347-356.
[http://dx.doi.org/10.3329/jsr.v3i2.6221]
[48]
Ghasemi, S.; Heidary, M.; Habibi, Z. The 11〈-hydroxylation of medroxyprogesterone acetate by Absidia griseolla var. igachii and Acremonium chrysogenum. Steroids, 2019, 149108427
[http://dx.doi.org/10.1016/j.steroids.2019.108427] [PMID: 31228485]
[49]
Wajid, A.; Ahmad, M.S.; Yousuf, S. Atia-tul-Wahab; Jabeen, A.; Atta-ur-Rahman; Choudhary, M.I. Biotransformation of progestonic hormone dydrogesterone with Macrophomina phaseolina, and study of the effect of biotransformed products on phagocytes oxidative burst. Steroids, 2019, 143, 67-72.
[http://dx.doi.org/10.1016/j.steroids.2018.12.009] [PMID: 30625340]
[50]
Smith, C.; Wahab, A.T.; Khan, M.S.; Ahmad, M.S.; Farran, D.; Iqbal Choudhary, M.; Baydoun, E. Microbial transformation of oxandrolone with Macrophomina phaseolina and Cunninghamella blakesleeana. Steroids, 2015, 102, 39-45.
[http://dx.doi.org/10.1016/j.steroids.2015.06.008] [PMID: 26095204]
[51]
An, X.; Gao, P.; Zhao, S.; Zhu, L.; You, X.; Li, C.; Zhang, Q.; Shan, L. Biotransformation of androst-4-ene-3,17-dione by three fungal species Fusarium solani BH1031, Aspergillus awamori MH18 and Mucor circinelloides W12. Nat. Prod. Res., 2019, 2019, 1-8.
[http://dx.doi.org/10.1080/14786419.2019.1636238] [PMID: 31429310]
[52]
Heidary, M.; Ghasemi, S.; Habibi, Z.; Ansari, F. Biotransformation of androst-4-ene-3,17-dione and nandrolone decanoate by genera of Aspergillus and Fusarium. Biotechnol. Lett., 2020, 42(9), 1767-1775.
[http://dx.doi.org/10.1007/s10529-020-02902-4] [PMID: 32358727]
[53]
Heidary, M.; Habibi, Z. Microbial transformation of androst-4-ene-3,17-dione by three fungal species Absidia griseolla var. igachii, Circinella muscae and Trichoderma virens. J. Mol. Catal., B Enzym., 2016, 126, 32-36.
[http://dx.doi.org/10.1016/j.molcatb.2016.01.007]
[54]
Ren, J.J.; Shen, Y.B.; Le Ge, R.; Wang, M. Research on biochemical materials with hydroxylation of androst-4-en-3,17-dione by Colletotrichum lini AS3. 4486. Appl. Mech. Mater., 2014, 540, 347-351.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.540.347]
[55]
Yildirim, K.; Kuru, A.; Küçükbaşol, E. Microbial transformation of androstenedione by Cladosporium sphaerospermum and Ulocladium chartarum. Biocatal. Biotransform., 2020, 38, 7-14.
[http://dx.doi.org/10.1080/10242422.2019.1604690]
[56]
Mao, S.; Zhang, L.; Ge, Z.; Wang, X.; Li, Y.; Liu, X.; Liu, F.; Lu, F. Microbial hydroxylation of steroids by Penicillium decumbens. J. Mol. Catal., B Enzym., 2016, 133, S346-S351.
[http://dx.doi.org/10.1016/j.molcatb.2017.02.007]
[57]
Koshimura, M.; Utsukihara, T.; Hara, A.; Mizobuchi, S.; Horiuchi, C.A.; Kuniyoshi, M. Hydroxylation of steroid compounds by Gelasinospora retispora. J. Mol. Catal., B Enzym., 2010, 67, 72-77.
[http://dx.doi.org/10.1016/j.molcatb.2010.07.008]
[58]
Świzdor, A.; Kołek, T.; Panek, A.; Białońska, A. Microbial Baeyer-Villiger oxidation of steroidal ketones using Beauveria bassiana: presence of an 11〈-hydroxyl group essential to generation of D-homo lactones. Biochim. Biophys. Acta, 2011, 1811(4), 253-262.
[http://dx.doi.org/10.1016/j.bbalip.2011.01.005] [PMID: 21277994]
[59]
Świzdor, A.; Panek, A.; Milecka-Tronina, N. Microbial Baeyer-Villiger oxidation of 5〈-steroids using Beauveria bassiana. A stereochemical requirement for the 11〈-hydroxylation and the lactonization pathway. Steroids, 2014, 82, 44-52.
[http://dx.doi.org/10.1016/j.steroids.2014.01.006] [PMID: 24486796]
[60]
Kollerov, V.; Shutov, A.; Kazantsev, A.; Donova, M. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains. Phytochemistry, 2020, 169112160
[http://dx.doi.org/10.1016/j.phytochem.2019.112160] [PMID: 31600654]
[61]
Hosseinabadi, T.; Vahidi, H.; Nickavar, B.; Kobarfard, F. Fungal transformation of androsta-1,4-diene-3,17-dione by Aspergillus brasiliensis. Daru, 2014, 22, 71.
[http://dx.doi.org/10.1186/s40199-014-0071-8] [PMID: 25398302]
[62]
Baydoun, S.; Wahab, A.T.; Bano, S.; Imad, R.; Choudhary, M.I. Microbial-catalysed derivatization of anti-cancer drug exemestane and cytotoxicity of resulting metabolites against human breast adenocarcinoma cell line (MCF-7) in vitro. Steroids, 2016, 115, 67-74.
[http://dx.doi.org/10.1016/j.steroids.2016.08.005] [PMID: 27521799]
[63]
Peart, P.C.; Chen, A.R.M.; Reynolds, W.F.; Reese, P.B. Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis. Steroids, 2012, 77(1-2), 85-90.
[http://dx.doi.org/10.1016/j.steroids.2011.10.008] [PMID: 22064215]
[64]
Yildirim, K.; Kuru, A. Microbial hydroxylation of epiandrosterone by Aspergillus candidus. Biocatal. Biotransform., 2017, 35, 120-126.
[http://dx.doi.org/10.1080/10242422.2017.1289184]
[65]
Yildirim, K.; Uzuner, A.; Gulcuoglu, E.Y. Baeyer-villiger oxidation of some steroids by Aspergillus tamarii MRC 72400. Collect. Czech. Chem. Commun., 2011, 76, 743-754.
[http://dx.doi.org/10.1135/cccc2011008]
[66]
Kozłowska, E.; Urbaniak, M.; Kancelista, A.; Dymarska, M.; Kostrzewa-Susłow, E.; Stępień, Ł.; Janeczko, T. Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of filamentous fungi. RSC Advances, 2017, 7, 31493-31501.
[http://dx.doi.org/10.1039/C7RA04608A]
[67]
Kozłowska, E.; Urbaniak, M.; Hoc, N.; Grzeszczuk, J.; Dymarska, M.; Stępień, Ł.; Pląskowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species. Sci. Rep., 2018, 8(1), 13449.
[http://dx.doi.org/10.1038/s41598-018-31665-2] [PMID: 30194436]
[68]
Li, H.; Sun, J.; Xu, Z. Biotransformation of DHEA into 7〈,15〈-diOH-DHEA.Methods in Molecular Biology; Microbial Steroids; Barredo, J.L., Herráiz, I; Springer: New York, 2017, pp. 1-13.
[69]
Wang, Y.; Sun, D.; Chen, Z.; Ruan, H.; Ge, W. Biotransformation of 3β-hydroxy-5-en-steroids by Mucor silvaticus. Biocatal. Biotransform., 2013, 31, 168-174.
[http://dx.doi.org/10.3109/10242422.2013.813490]
[70]
Huang, L.H.; Li, J.; Xu, G.; Zhang, X.H.; Wang, Y.G.; Yin, Y.L.; Liu, H.M. Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer). Westling. Steroids, 2010, 75(13-14), 1039-1046.
[http://dx.doi.org/10.1016/j.steroids.2010.06.008] [PMID: 20600202]
[71]
Świzdor, A.; Panek, A.; Milecka-Tronina, N. Biohydroxylation of 7-oxo-DHEA, a natural metabolite of DHEA, resulting in formation of new metabolites of potential pharmaceutical interest. Chem. Biol. Drug Des., 2016, 88(6), 844-849.
[http://dx.doi.org/10.1111/cbdd.12813] [PMID: 27369457]
[72]
Kollerov, V.V.; Shutov, A.A.; Kazantsev, A.V.; Donova, M.V. Biocatalytic modifications of pregnenolone by selected filamentous fungi. Biocatal. Biotransform., 2019, 37, 319-330.
[http://dx.doi.org/10.1080/10242422.2018.1549237]
[73]
Hunter, A.C.; Bergin-Simpson, H. Distinct metabolic handling of 3β-hydroxy-17a-oxa-D-homo-5〈-androstan-17-one by the filamentous fungus Aspergillus tamarii KITA: evidence in support of steroid/hydroxylase binding hypothesis. Biochim. Biophys. Acta, 2007, 1771(9), 1254-1261.
[http://dx.doi.org/10.1016/j.bbalip.2007.07.001] [PMID: 17692565]
[74]
Christy Hunter, A.; Khuenl-Brady, H.; Barrett, P.; Dodd, H.T.; Dedi, C. Transformation of some 3〈-substituted steroids by Aspergillus tamarii KITA reveals stereochemical restriction of steroid binding orientation in the minor hydroxylation pathway. J. Steroid Biochem. Mol. Biol., 2010, 118(3), 171-176.
[http://dx.doi.org/10.1016/j.jsbmb.2009.12.003] [PMID: 20026270]
[75]
Kozłowska, E.; Matera, A.; Sycz, J.; Kancelista, A.; Kostrzewa-Susłow, E.; Janeczko, T. New 6,19-oxidoandrostan derivatives obtained by biotransformation in environmental filamentous fungi cultures. Microb. Cell Fact., 2020, 19(1), 37.
[http://dx.doi.org/10.1186/s12934-020-01303-6] [PMID: 32066453]
[76]
Kozłowska, E.; Dymarska, M.; Kostrzewa-Susłow, E.; Janeczko, T. Cascade biotransformation of estrogens by Isaria fumosorosea KCh J2. Sci. Rep., 2019, 9(1), 10734.
[http://dx.doi.org/10.1038/s41598-019-47225-1] [PMID: 31341201]
[77]
García-Carnelli, C.; Rodríguez, P.; Heinzen, H.; Menéndez, P. Influence of culture conditions on the biotransformation of (+)-limonene by Aspergillus niger. Z. Natforsch. C J. Biosci., 2014, 69(1-2), 61-67.
[http://dx.doi.org/10.5560/znc.2013-0048] [PMID: 24772824]
[78]
Bier, M.C.J.; Medeiros, A.B.P.; Soccol, C.R. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol., 2017, 121(2), 137-144.
[http://dx.doi.org/10.1016/j.funbio.2016.11.003] [PMID: 28089045]
[79]
Mazur, M.; Gładkowski, W.; Srček, V.G.; Radošević, K.; Maciejewska, G.; Wawrzeńczyk, C. Regio- and enantioselective microbial hydroxylation and evaluation of cytotoxic activity of β-cyclocitral-derived halolactones. PLoS One, 2017, 12(8), 1.
[http://dx.doi.org/10.1371/journal.pone.0183429] [PMID: 28837605]
[80]
Cruz de Carvalho, T.; de Oliveira Silva, E.; Soares, G.A.; Parreira, R.L.T.; Ambrósio, S.R.; Furtado, N.A.J.C. Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess Biosyst. Eng., 2020, 43(6), 1051-1059.
[http://dx.doi.org/10.1007/s00449-020-02303-x] [PMID: 32020446]
[81]
Furtado, R.A.; Gunaherath, G.M.K.B.; Bastos, J.K.; Gunatilaka, A.A.L. Microbial Biotransformation of 16〈,17-epoxy-ent-kaurane-19-oic acid by Beauveria sulfurescens ATCC 7159-F Nat. Prod. Commun, 2013, 8, 1934578X1300800..
[82]
Herrera-Canché, S.G.; Sánchez-González, M.; Loyola, L.A.; Bórquez, J.; García-Sosa, K.; Peña-Rodríguez, L.M. Biotransformation of a mulinane diterpenoid by Aspergillus alliaceus and Mucor circinelloides. Biocatal. Biotransform., 2020, 38, 1-6.
[http://dx.doi.org/10.1080/10242422.2019.1596083]
[83]
Choudhary, M.I.; Atif, M.; Ali Shah, S.A.; Sultan, S.; Erum, S.; Khan, S.N. Atta-Ur-Rahman Biotransformation of dehydroabietic acid with microbial cell cultures and 〈-glucosidase inhibitory activity of resulting metabolites. Int. J. Pharm. Pharm. Sci., 2014, 6, 375-378.
[84]
Severiano, M.E.; Simão, M.R.; Ramos, H.P.; Parreira, R.L.T.; Arakawa, N.S.; Said, S.; Furtado, N.A.J.C.; de Oliveira, D.C.R.; Gregório, L.E.; Tirapelli, C.R.; Veneziani, R.C.; Ambrósio, S.R. Biotransformation of ent-pimaradienoic acid by cell cultures of Aspergillus niger. Bioorg. Med. Chem., 2013, 21(18), 5870-5875.
[http://dx.doi.org/10.1016/j.bmc.2013.07.009] [PMID: 23916147]
[85]
Liu, X.; Chen, R.; Xie, D.; Mei, M.; Zou, J.; Chen, X.; Dai, J. Microbial transformations of taxadienes and the multi-drug resistant tumor reversal activities of the metabolites. Tetrahedron, 2012, 68, 9539-9549.
[http://dx.doi.org/10.1016/j.tet.2012.09.091]
[86]
Chen, Y.; Zhang, L.; Qin, B.; Zhang, X.; Jia, X.; Wang, X.; Jin, D.; You, S. An insight into the curdione biotransformation pathway by Aspergillus niger. Nat. Prod. Res., 2014, 28(7), 454-460.
[http://dx.doi.org/10.1080/14786419.2013.873434] [PMID: 24456521]
[87]
Chen, L-X.; Zhao, Q.; Zhang, M.; Liang, Y-Y.; Ma, J-H.; Zhang, X.; Ding, L.Q.; Zhao, F.; Qiu, F. Biotransformation of curcumenol by Mucor polymorphosporus. J. Nat. Prod., 2015, 78(4), 674-680.
[http://dx.doi.org/10.1021/np500845z] [PMID: 25821895]
[88]
Li-Xia, C.; Hui, Z.; Qian, Z.; Shi-Yu, Y.; Zhong, Z.; Tian-Xian, L.; Feng, Q. Microbial transformation of curcumol by Aspergillus niger. Nat. Prod. Commun, 2013, 8, 1934578X1300800..
[89]
Chen, Y.; Tian, J.L.; Wu, J.S.; Sun, T.M.; Zhou, L.N.; Song, S.J.; You, S. Biotransfomation of cyperenoic acid by Cunninghamella elegans AS 3.2028 and the potent anti-angiogenic activities of its metabolites. Fitoterapia, 2017, 118, 32-37.
[http://dx.doi.org/10.1016/j.fitote.2017.02.004] [PMID: 28216250]
[90]
Fujiwara, M.; Marumoto, S.; Yagi, N.; Miyazawa, M. Biotransformation of turmerones by Aspergillus niger. J. Nat. Prod., 2011, 74(1), 86-89.
[http://dx.doi.org/10.1021/np100416v] [PMID: 21189039]
[91]
Gandomkar, S.; Habibi, Z. Biotransformation of 6〈-santonin and 1,2-dihydro-〈-santonin by Acremonium chrysogenum PTCC 5271 and Rhizomucor pusillus PTCC 5134. J. Mol. Catal., B Enzym., 2014, 110, 59-63.
[http://dx.doi.org/10.1016/j.molcatb.2014.09.003]
[92]
Asakawa, Y.; Hashimoto, T.; Noma, Y. Biotransformation of sesquiterpenoids from liverworts by fungi and mammals. Nat. Prod. Commun., 2010, 5(5), 695-707.
[http://dx.doi.org/10.1177/1934578X1000500506] [PMID: 20521532]
[93]
Boufridi, A.; Petek, S.; Evanno, L.; Beniddir, M.A.; Debitus, C.; Buisson, D.; Poupon, E. Biotransformations versus chemical modifications: new cytotoxic analogs of marine sesquiterpene ilimaquinone. Tetrahedron Lett., 2016, 57, 4922-4925.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.075]
[94]
Daramwar, P.P.; Srivastava, P.L.; Kolet, S.P.; Thulasiram, H.V. Biocatalyst mediated regio- and stereo-selective hydroxylation and epoxidation of (Z)-〈-santalol. Org. Biomol. Chem., 2014, 12(7), 1048-1051.
[http://dx.doi.org/10.1039/c3ob42174k] [PMID: 24407157]
[95]
Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep., 2006, 23(3), 394-411.
[http://dx.doi.org/10.1039/b515312n] [PMID: 16741586]
[96]
Wang, C.; Dong, P.; Zhang, L.; Huo, X.; Zhang, B.; Wang, C.; Huang, S.; Wang, X.; Yao, J.; Liu, K. Regio- and stereo-selective oxidation of β-boswellic acids transformed by filamentous fungi. RSC Advances, 2015, 5, 12717-12725.
[http://dx.doi.org/10.1039/C4RA16459H]
[97]
Basso, A.V.; Nicotra, V.E.; Parra, A.; Martínez, A.; Fernández-Vivas, A. Biotransformation of salpichrolides A, C, and G by three filamentous fungi. J. Nat. Prod., 2016, 79(6), 1658-1667.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00310] [PMID: 27285201]
[98]
Haldar, S.; Kolet, S.P.; Thulasiram, H.V. Biocatalysis: fungi mediated novel and selective 12β- or 17β-hydroxylation on the basic limonoid skeleton. Green Chem., 2013, 15, 1311.
[http://dx.doi.org/10.1039/c3gc40193f]
[99]
Kuban, M.; Öngen, G.; Khan, I.A.; Bedir, E. Microbial transformation of cycloastragenol. Phytochemistry, 2013, 88, 99-104.
[http://dx.doi.org/10.1016/j.phytochem.2012.12.007] [PMID: 23357596]
[100]
Dong, T.; Wu, G-W.; Wang, X-N.; Gao, J-M.; Chen, J-G.; Lee, S-S. Microbiological transformation of diosgenin by resting cells of filamentous fungus, Cunninghamella echinulata CGMCC 3.2716. J. Mol. Catal., B Enzym., 2010, 67, 251-256.
[http://dx.doi.org/10.1016/j.molcatb.2010.09.001]
[101]
dos Santos, V.H.P.; de Oliveira Silva, E. Endophytic fungi from the Brazilian flora and their employment in biotransformation reactions. Quim. Nova, 2019, 42, 784-791.
[http://dx.doi.org/10.21577/0100-4042.20170380]
[102]
Ekiz, G.; Duman, S.; Bedir, E. Biotransformation of cyclocanthogenol by the endophytic fungus Alternaria eureka 1E1BL1. Phytochemistry, 2018, 151, 91-98.
[http://dx.doi.org/10.1016/j.phytochem.2018.04.006] [PMID: 29677643]
[103]
Özçınar, Ö. Özgür Tağ; Yusufoglu, H.; Kivçak, B.; Bedir, E. Biotransformation of Neoruscogenin by the Endophytic Fungus Alternaria eureka. J. Nat. Prod., 2018, 81(6), 1357-1367.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00898] [PMID: 29893560]
[104]
Ud Din, Z.; de Medeiros, L.S.; Abreu, L.M.; Pfenning, L.H.; Lopes Jymeni, D.B.; Rodrigues-Filho, E. Differential metabolism of diastereoisomeric diterpenes by Preussia minima, found as endophytic fungus in Cupressus lusitanica. Bioorg. Chem., 2018, 78, 436-443.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.003] [PMID: 29702360]
[105]
Fill, T.P.; da Silva, J.V.; de Oliveira, K.T.; da Silva, B.F.; Rodrigues-Fo, E. Oxidative potential of some endophytic fungi using 1-indanone as a substrate. J. Microbiol. Biotechnol., 2012, 22(6), 832-837.
[http://dx.doi.org/10.4014/jmb.1112.12014] [PMID: 22573162]
[106]
Martins, M.P.; Ouazzani, J.; Arcile, G.; Jeller, A.H.; de Lima, J.P.F.; Seleghim, M.H.R.; Oliveira, A.L.L.; Debonsi, H.M.; Venâncio, T.; Yokoya, N.S.; Fujii, M.T.; Porto, A.L. Biohydroxylation of (-)-ambrox®, (-)-sclareol, and (+)-sclareolide by whole cells of Brazilian marine-derived fungi. Mar. Biotechnol. (NY), 2015, 17(2), 211-218.
[http://dx.doi.org/10.1007/s10126-015-9610-7] [PMID: 25634054]
[107]
Bocato, M.Z.; Simões, R.A.; Calixto, L.A.; de Gaitani, C.M.; Pupo, M.T.; de Oliveira, A.R.M. Solid phase microextraction and LC-MS/MS for the determination of paliperidone after stereoselective fungal biotransformation of risperidone. Anal. Chim. Acta, 2012, 742, 80-89.
[http://dx.doi.org/10.1016/j.aca.2012.05.056] [PMID: 22884211]
[108]
de Jesus, L.I.; Albuquerque, N.C.P.; Borges, K.B.; Simões, R.A.; Calixto, L.A.; Furtado, N.A.J.C.; de Gaitani, C.M.; Pupo, M.T.; de Oliveira, A.R.M. Enantioselective fungal biotransformation of risperidone in liquid culture medium by capillary electrophoresis and hollow fiber liquid-phase microextraction. Electrophoresis, 2011, 32(19), 2765-2775.
[http://dx.doi.org/10.1002/elps.201100328] [PMID: 21898463]
[109]
do Nascimento, J.S.; Núñez, W.E.R.; dos Santos, V.H.P.; Aleu, J.; Cunha, S.; Silva, E. de O. Mapping the biotransformation of coumarins through filamentous fungi. Molecules, 2019, 24, 3531.
[http://dx.doi.org/10.3390/molecules24193531]
[110]
Yadav, S.; Yadav, R.S.S.; Yadava, S.; Yadav, K.D.S. Stereoselective hydroxylation of ethylbenzene to (R)-1-phenylethanol using mycelia of Aspergillus niger as catalyst. Catal. Commun., 2011, 12, 781-784.
[http://dx.doi.org/10.1016/j.catcom.2011.01.020]
[111]
Chaikin, S.W.; Brown, W.G. Reduction of aldehydes, ketones and acid chlorides by sodium borohydride. J. Am. Chem. Soc., 1949, 71, 122-125.
[http://dx.doi.org/10.1021/ja01169a033]
[112]
Toda, F.; Kiyoshige, K.; Yagi, M. NaBH4 reduction of ketones in the solid state. Angew. Chem., 1989, 28, 320-321.
[http://dx.doi.org/10.1002/anie.198903201]
[113]
Prelog, V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl. Chem., 1964, 9, 119-130.
[http://dx.doi.org/10.1351/pac196409010119]
[114]
Barros-Filho, B.A.; Nunes, F.M.; de Oliveira, M. da C.F.; Lemos, T.L.G.; de Mattos, M.C.; de Gonzalo, G.; Gotor-Fernández, V.; Gotor, V. Bioreduction of prochiral ketones by growing cells of Lasiodiplodia theobromae: discovery of a versatile biocatalyst for asymmetric synthesis. J. Mol. Catal., B Enzym., 2010, 65, 37-40.
[http://dx.doi.org/10.1016/j.molcatb.2010.01.023]
[115]
Nagaki, M.; Sato, R.; Tanabe, S.; Sato, T.; Hasui, Y.; Chounan, Y.; Tanaka, K.; Harada, Y. Biotransformation of acetophenone to 1-phenylethanol by fungi. Trans. Mater. Res. Soc. Jpn., 2016, 41, 247-250.
[http://dx.doi.org/10.14723/tmrsj.41.247]
[116]
Ogórek, R.; Jarosz, B. Assessment of headspace solid-phase microextraction (HS-SPME) for control of asymmetric bioreduction of ketones by Alternaria alternata. Biocatal. Biotransform., 2020, 38, 75-80.
[http://dx.doi.org/10.1080/10242422.2019.1664478]
[117]
Scalvenzi, L. Biotransformations by endophytic fungi isolated from traditional Ecuadorian medicinal plants: Connecting ethnomedicine with biotechnology. Rev. Amaz. Cienc. y Tecnol., 2012, 1, 248-270.
[118]
Świzdor, A.; Janeczko, T.; Dmochowska-Gładysz, J. Didymosphaeria igniaria: a new microorganism useful for the enantioselective reduction of aryl-aliphatic ketones. J. Ind. Microbiol. Biotechnol., 2010, 37(11), 1121-1130.
[http://dx.doi.org/10.1007/s10295-010-0759-9] [PMID: 20544255]
[119]
Vitale, P.; Digeo, A.; Perna, F.; Agrimi, G.; Salomone, A.; Scilimati, A.; Cardellicchio, C.; Capriati, V. Stereoselective chemoenzymatic synthesis of optically active aryl-substituted oxygen-containing heterocycles. Catalysts, 2017, 7, 37.
[http://dx.doi.org/10.3390/catal7020037]
[120]
Li, H.; Li, Z.; Ruan, G.; Yu, Y.; Liu, X. Asymmetric reduction of acetophenone into R-(+)-1-phenylethanol by endophytic fungus Neofusicoccum parvum BYEF07 isolated from Illicium verum. Biochem. Biophys. Res. Commun., 2016, 473(4), 874-878.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.142] [PMID: 27038548]
[121]
Liu, H.; Chen, B-S.; de Souza, F.Z.R.; Liu, L. A comparative study on asymmetric reduction of ketones using the growing and resting cells of marine-derived fungi. Mar. Drugs, 2018, 16(2), 62.
[http://dx.doi.org/10.3390/md16020062] [PMID: 29443943]
[122]
Rocha, L.C.; Ferreira, H.V.; Pimenta, E.F.; Berlinck, R.G.S.; Rezende, M.O.O.; Landgraf, M.D.; Seleghim, M.H.R.; Sette, L.D.; Porto, A.L.M. Biotransformation of 〈-bromoacetophenones by the marine fungus Aspergillus sydowii. Mar. Biotechnol. (NY), 2010, 12(5), 552-557.
[http://dx.doi.org/10.1007/s10126-009-9241-y] [PMID: 19941024]
[123]
Rocha, L.C.; Ferreira, H.V.; Luiz, R.F.; Sette, L.D.; Porto, A.L.M. Stereoselective bioreduction of 1-(4-methoxyphenyl)ethanone by whole cells of marine-derived fungi. Mar. Biotechnol. (NY), 2012, 14(3), 358-362.
[http://dx.doi.org/10.1007/s10126-011-9419-y] [PMID: 22160343]
[124]
Rocha, L.C.; Seleghim, M.H.R.; Comasseto, J.V.; Sette, L.D.; Porto, A.L.M. Stereoselective bioreduction of 〈-azido ketones by whole cells of marine-derived fungi. Mar. Biotechnol. (NY), 2015, 17(6), 736-742.
[http://dx.doi.org/10.1007/s10126-015-9644-x] [PMID: 26272428]
[125]
Alvarenga, N.; Porto, A.L.M. Stereoselective reduction of 2-azido-1-phenylethanone derivatives by whole cells of marine-derived fungi applied to synthesis of enantioenriched β-hydroxy-1,2,3-triazoles. Biocatal. Biotransform., 2017, 35, 388-396.
[http://dx.doi.org/10.1080/10242422.2017.1352585]
[126]
Decarlini, M.F.; Aimar, M.L.; Vázquez, A.M.; Vero, S.; Rossi, L.I.; Yang, P. Fungi isolated from food samples for an efficient stereoselective production of phenylethanols. Biocatal. Agric. Biotechnol., 2017, 12, 275-285.
[http://dx.doi.org/10.1016/j.bcab.2017.10.014]
[127]
Mączka, W.; Wińska, K.; Grabarczyk, M.; Żarowska, B. Biotransformation of α-acetylbutyrolactone in Rhodotorula strains. Int. J. Mol. Sci., 2018, 19(7), 19.
[http://dx.doi.org/10.3390/ijms19072106] [PMID: 30036958]
[128]
Borowiecki, P.; Włoczewska, M.; Ochal, Z. Asymmetric reduction of 1-(benzoazol-2-ylsulfanyl)propan-2-ones using whole cells of Mortierella isabellina, Debaryomyces hansenii, Geotrichum candidum and Zygosaccharomyces rouxii. J. Mol. Catal., B Enzym., 2014, 109, 9-16.
[http://dx.doi.org/10.1016/j.molcatb.2014.07.015]
[129]
Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D. Whole cells as biocatalysts in organic transformations. Molecules, 2018, 23(6), 1265.
[http://dx.doi.org/10.3390/molecules23061265] [PMID: 29799483]
[130]
Zampieri, D.S.; de Paula, B.R.S.; Zampieri, L.A.; Vale, J.A.; Rodrigues, J.A.R.; Moran, P.J.S. Enhancements of enantio and diastereoselectivities in reduction of (Z)-3-halo-4-phenyl-3-buten-2-one mediated by microorganisms in ionic liquid/water biphasic system. J. Mol. Catal., B Enzym., 2013, 85-86, 61-64.
[http://dx.doi.org/10.1016/j.molcatb.2012.08.005]
[131]
Ferreira, I.M.; Fiamingo, A.; Campana-Filho, S.P.; Porto, A.L.M. Biotransformation of (E)-2-methyl-3-phenylacrylaldehyde using mycelia of Penicillium citrinum CBMAI 1186, both free and immobilized on chitosan. Mar. Biotechnol. (NY), 2020, 22(3), 348-356.
[http://dx.doi.org/10.1007/s10126-020-09954-7] [PMID: 32080775]
[132]
Nagy, B.; Dima, N.; Paizs, C.; Brem, J.; Irimie, F.D.; Toşa, M.I. New chemo-enzymatic approaches for the synthesis of (R)- and (S)-bufuralol. Tetrahedron Asymmetry, 2014, 25, 1316-1322.
[http://dx.doi.org/10.1016/j.tetasy.2014.08.002]
[133]
Miyazawa, M.; Shimizu, K. Stereoselective biocatalytic reduction of α-ionone by Glomerella cingulata. J. Mol. Catal., B Enzym., 2012, 74, 6-8.
[http://dx.doi.org/10.1016/j.molcatb.2011.07.021]
[134]
Shimizu, K.; Ono, T.; Miyazawa, M. Highly selective and asymmetric reductive biotransformation of α-ionone by Epicoccum purpurascens. J. Oleo Sci., 2013, 62(4), 231-234.
[http://dx.doi.org/10.5650/jos.62.231] [PMID: 23535310]
[135]
Birolli, W.; Ferrreira, I.; Jimenez, D.; Silva, B.; Silva, B.; Pinto, A.; Porto, A. First asymmetric reduction of isatin by marine-derived fungi. J. Braz. Chem. Soc., 2017, 28, 1023-1029.
[136]
Uzir, M.H.; Najimudin, N. On the bi-enzymatic behaviour of Saccharomyces cerevisiae-mediated stereoselective biotransformation of 2,6,6-trimethylcyclohex-2-ene-1,4-dione. Mol. Catal., 2018, 447, 56-64.
[http://dx.doi.org/10.1016/j.mcat.2018.01.002]
[137]
Din, Z.U.; Fill, T.P.; Donatoni, M.C.; Dos Santos, C.A.A.; Brocksom, T.J.; Rodrigues-Filho, E. Microbial diversification of Diels-Alder cycloadducts by whole cells of Penicillium brasilianum. Mol. Divers., 2016, 20(4), 877-885.
[http://dx.doi.org/10.1007/s11030-016-9680-0] [PMID: 27251138]
[138]
Milagre, C.D.F.; Milagre, H.M.S.; Moran, P.J.S.; Rodrigues, J.A.R. Chemoenzymatic synthesis of 〈-hydroxy-β-methyl-γ-hydroxy esters: role of the keto-enol equilibrium to control the stereoselective hydrogenation in a key step. J. Org. Chem., 2010, 75(5), 1410-1418.
[http://dx.doi.org/10.1021/jo902227f] [PMID: 20143825]
[139]
Contente, M.L.; Molinari, F.; Zambelli, P.; De Vitis, V.; Gandolfi, R.; Pinto, A.; Romano, D. Biotransformation of aromatic ketones and ketoesters with the non-conventional yeast Pichia glucozyma. Tetrahedron Lett., 2014, 55, 7051-7053.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.133]
[140]
Ramos, A.D.S.; Ribeiro, J.B.; Lopes, R.D.O.; Leite, S.G.F.; Souza, R.O.M.A. De Highly enantioselective bioreduction of ethyl 3-oxohexanoate. Tetrahedron Lett., 2011, 52, 6127-6129.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.023]
[141]
Rodríguez, P.; Reyes, B.; Barton, M.; Coronel, C.; Menéndez, P.; Gonzalez, D.; Rodríguez, S. Stereoselective biotransformation of α-alkyl-β-keto esters by endophytic bacteria and yeast. J. Mol. Catal., B Enzym., 2011, 71, 90-94.
[http://dx.doi.org/10.1016/j.molcatb.2011.04.003]
[142]
Kuriata-Adamusiak, R.; Strub, D.; Lochyński, S. Application of microorganisms towards synthesis of chiral terpenoid derivatives. Appl. Microbiol. Biotechnol., 2012, 95(6), 1427-1436.
[http://dx.doi.org/10.1007/s00253-012-4304-9] [PMID: 22846902]
[143]
Usami, A.; Motooka, R.; Miyazawa, M. Highly selective biotransformation of (+)-(1S)- and (-)-(1R)-camphorquinone by Aspergillus wentii. Biocatal. Biotransform., 2014, 32, 285-289.
[http://dx.doi.org/10.3109/10242422.2014.975215]
[144]
Quezada, M.A.; Carballeira, J.D.; Sinisterra, J.V. Diplogelasinospora grovesii IMI 171018 immobilized in polyurethane foam. An efficient biocatalyst for stereoselective reduction of ketones. Bioresour. Technol., 2012, 112, 18-27.
[http://dx.doi.org/10.1016/j.biortech.2012.02.074] [PMID: 22424921]
[145]
dos Santos, R.A.M.; Souza, F. de O.; Pilau, E.J.; Porto, C.; Gonçalves, J.E.; de Oliveira, A.J.B.; Gonçalves, R.A.C. Biotransformation of (+)-carvone and (−)-carvone using human skin fungi: A green method of obtaining fragrances and flavours. Biocatal. Biotransform., 2018, 36, 396-400.
[http://dx.doi.org/10.1080/10242422.2017.1376049]
[146]
Silva, V.D.; Carletto, J.S.; Carasek, E.; Stambuk, B.U.; Da Graça Nascimento, M. Asymmetric reduction of (4S)-(+)-carvone catalyzed by baker’s yeast: a green method for monitoring the conversion based on liquid-liquid-liquid microextraction with polypropylene hollow fiber membranes. Process Biochem., 2013, 48, 1159-1165.
[http://dx.doi.org/10.1016/j.procbio.2013.05.010]
[147]
Wincza, E.; Lochyński, S. Chemical and microbiological oxidation of (-)-cis-carane-4-one leading to chiral compounds and evaluation of their antifeedant activity. ARKIVOC, 2012, 2012, 196-203.
[http://dx.doi.org/10.3998/ark.5550190.0013.414]
[148]
Mascotti, M.L.; Palazzolo, M.A.; Bisogno, F.R.; Kurina-Sanz, M. Biotransformation of dehydro-epi-androsterone by Aspergillus parasiticus: Metabolic evidences of BVMO activity. Steroids, 2016, 109, 44-49.
[http://dx.doi.org/10.1016/j.steroids.2016.03.018] [PMID: 27025973]
[149]
Moeller, G.; Adamski, J. Multifunctionality of human 17β-hydroxysteroid dehydrogenases. Mol. Cell. Endocrinol., 2006, 248(1-2), 47-55.
[http://dx.doi.org/10.1016/j.mce.2005.11.031] [PMID: 16413960]
[150]
Liu, Y.; Wang, Y.; Chen, X.; Wu, Q.; Wang, M.; Zhu, D.; Ma, Y. Regio- and stereoselective reduction of 17-oxosteroids to 17β-hydroxysteroids by a yeast strain Zygowilliopsis sp. WY7905. Steroids, 2017, 118, 17-24.
[http://dx.doi.org/10.1016/j.steroids.2016.11.002] [PMID: 27864020]
[151]
Świzdor, A. Baeyer-Villiger oxidation of some C19 steroids by Penicillium lanosocoeruleum. Molecules, 2013, 18(11), 13812-13822.
[http://dx.doi.org/10.3390/molecules181113812] [PMID: 24213656]
[152]
Janeczko, T.; Dmochowska-Gładysz, J.; Szumny, A.; Kostrzewa-Susłow, E. Enantioselective reduction of 4-chromanone and its derivatives by selected filamentous fungi. J. Mol. Catal., B Enzym., 2013, 97, 278-282.
[http://dx.doi.org/10.1016/j.molcatb.2013.09.004]
[153]
Mikell, J.R.; Herath, W.; Khan, I.A. Microbial metabolism. Part 12. Isolation, characterization and bioactivity evaluation of eighteen microbial metabolites of 4′-hydroxyflavanone. Chem. Pharm. Bull. (Tokyo), 2011, 59(6), 692-697.
[http://dx.doi.org/10.1248/cpb.59.692] [PMID: 21628902]
[154]
Mikell, J.R.; Khan, I.A. Bioconversion of 7-hydroxyflavanone: isolation, characterization and bioactivity evaluation of twenty-one phase I and phase II microbial metabolites. Chem. Pharm. Bull. (Tokyo), 2012, 60(9), 1139-1145.
[http://dx.doi.org/10.1248/cpb.c12-00296] [PMID: 22976322]
[155]
Martins, M.P.; Mouad, A.M.; Porto, A.L.M. Hydrolysis of allylglycidyl ether by marine fungus Trichoderma sp. Gc1 and the enzymatic resolution of allylchlorohydrin by Candida antarctica lipase type B. 2012, 10, 27-33.
[156]
Martins, M.P.; Mouad, A.M.; Boschini, L.; Regali Seleghim, M.H.; Sette, L.D.; Meleiro Porto, A.L. Marine fungi Aspergillus sydowii and Trichoderma sp. catalyze the hydrolysis of benzyl glycidyl ether. Mar. Biotechnol. (NY), 2011, 13(2), 314-320.
[http://dx.doi.org/10.1007/s10126-010-9302-2] [PMID: 20549284]
[157]
Mei, R.F.; Shi, Y.X.; Duan, W.H.; Ding, H.; Zhang, X.R.; Cai, L.; Ding, Z.T. Biotransformation of α-terpineol by: Alternaria alternata. RSC Advances, 2020, 10, 6491-6496.
[http://dx.doi.org/10.1039/C9RA08042B]
[158]
Gowri, P.M.; Haribabu, K.; Kishore, H.; Manjusha, O.; Biswas, S.; Murty, U.S.N. Microbial transformation of (+)-heraclenin by Aspergillus niger and evaluation of its antiplasmodial and antimicrobial activities. Curr. Sci., 2011, 100, 1706-1711.
[159]
Lv, X.; Xin, X.; Deng, S.; Zhang, B.; Hou, J.; Ma, X.; Wang, C.; Wang, Z.; Kuang, H. Biotransformation of osthole by Mucor spinosus. Process Biochem., 2012, 47, 2542-2546.
[http://dx.doi.org/10.1016/j.procbio.2012.07.012]
[160]
Ibrahim, A.K.; Radwan, M.M.; Ahmed, S.A.; Slade, D.; Ross, S.A.; ElSohly, M.A.; Khan, I.A. Microbial metabolism of cannflavin A and B isolated from Cannabis sativa. Phytochemistry, 2010, 71(8-9), 1014-1019.
[http://dx.doi.org/10.1016/j.phytochem.2010.02.011] [PMID: 20223485]
[161]
Hussain, R.; Ahmed, M.; Khan, T.A.; Akhter, Y. Fungal P450 monooxygenases - the diversity in catalysis and their promising roles in biocontrol activity. Appl. Microbiol. Biotechnol., 2020, 104(3), 989-999.
[http://dx.doi.org/10.1007/s00253-019-10305-3] [PMID: 31858195]
[162]
Zhou, L.; Xu, W.; Chen, Y.; Zhao, J.; Yu, N.; Fu, B.; You, S. Stereoselective epoxidation of curcumol and curdione by Cunninghamella elegans AS 3.2028. Catal. Commun., 2012, 28, 191-195.
[http://dx.doi.org/10.1016/j.catcom.2012.08.013]
[163]
Arunrattiyakorn, P.; Kuno, M.; Aree, T.; Laphookhieo, S.; Sriyatep, T.; Kanzaki, H.; Garcia Chavez, M.A.; Wang, Y.A.; Andersen, R.J. Biotransformation of β-mangostin by an endophytic fungus of Garcinia mangostana to furnish xanthenes with an unprecedented heterocyclic skeleton. J. Nat. Prod., 2018, 81(10), 2244-2250.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00519] [PMID: 30350994]
[164]
de Oliveira Silva, E.; Dos Santos Gonçalves, N.; Alves Dos Santos, R.; Furtado, N.A.J.C. Microbial metabolism of atovaquone and cytotoxicity of the produced phase I metabolite. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(5), 645-650.
[http://dx.doi.org/10.1007/s13318-015-0294-1] [PMID: 26253156]
[165]
Paludo, C.R.; da Silva-Junior, E.A.; de Oliveira Silva, E.; Vessecchi, R.; Peporine Lopes, N.; Tallarico Pupo, M.; da Silva Emery, F.; dos Santos Gonçalves, N.; Alves Dos Santos, R.; Jacometti Cardoso Furtado, N.A. Inactivation of β-lapachone cytotoxicity by filamentous fungi that mimic the human blood metabolism. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(2), 213-220.
[http://dx.doi.org/10.1007/s13318-016-0337-2] [PMID: 27059844]
[166]
Chen, L.; Shen, H.; Wei, C.; Zhu, Q. Bioresolution of (R)-glycidyl azide by Aspergillus niger ZJUTZQ208: a new and concise synthon for chiral vicinal amino alcohols. Appl. Microbiol. Biotechnol., 2013, 97(6), 2609-2616.
[http://dx.doi.org/10.1007/s00253-012-4382-8] [PMID: 22965190]
[167]
Queiroz, M.S.R.; Pinheiro, L.Z.; Sutili, F.K.; de Souza, P.M.; Seldin, L.; Muzitano, M.F.; de Souza, R.O.M.A.; Guimarães, D.O.; Leal, I.C.R. Enantioselective biotransformation of sterically hindered amine substrates by the fungus Stemphylium lycopersici. J. Appl. Microbiol., 2018, 124(5), 1107-1121.
[http://dx.doi.org/10.1111/jam.13684] [PMID: 29292556]
[168]
Cazetta, T.; Moran, P.J.S.; Rodrigues, J.A.R. Highly enantioselective deracemization of 1-phenyl-1,2-ethanediol and its derivatives by stereoinversion using Candida albicans in a one-pot process. J. Mol. Catal., B Enzym., 2014, 109, 178-183.
[http://dx.doi.org/10.1016/j.molcatb.2014.08.018]
[169]
Adelin, E.; Martin, M.T.; Bricot, M.F.; Cortial, S.; Retailleau, P.; Ouazzani, J. Biotransformation of natural compounds: unexpected thio conjugation of Sch-642305 with 3-mercaptolactate catalyzed by Aspergillus niger ATCC 16404 cells. Phytochemistry, 2012, 84, 135-140.
[http://dx.doi.org/10.1016/j.phytochem.2012.08.002] [PMID: 22975164]
[170]
Dong, X.; Gao, Z.; Hu, H.; Gao, R.; Sun, D. Microbial transformation of pseudoprotodioscin by Chaetomium olivaceum. J. Mol. Catal., B Enzym., 2016, 130, 88-95.
[http://dx.doi.org/10.1016/j.molcatb.2016.05.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy