Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Cadmium Contamination, Bioavailability, Uptake Mechanism and Remediation Strategies in Soil-Plant-Environment System: a Critical Review

Author(s): Umair Riaz*, Ambreen Aslam, Qamar uz Zaman, Sabiha Javeid, Rehman Gul, Shazia Iqbal, Sana Javid, Ghulam Murtaza* and Moazzam Jamil

Volume 17, Issue 1, 2021

Published on: 17 August, 2020

Page: [49 - 60] Pages: 12

DOI: 10.2174/1573411016999200817174311

Price: $65

Abstract

Background: Cadmium contamination is becoming an important issue globally due to its high toxicity and carcinogenicity, leading to detrimental effects on both environmental and human health. This review paper discusses the different sources of cadmium, its toxic effects on the environment and human health, and the influence of different soil factors in changing the speciation and bioavailability of cadmium in soil. This paper also covers research on different remediation strategies currently available for reducing cadmium bioavailability.

Methods: Previous research and critical comparison of cadmium extent, toxicity, effects and management were studied.

Results: The carcinogenic nature of Cadmium is of significant human health concern. Cadmium is found in both free and complexed forms, where its availability depends on its speciation in soil. In soil, oxidizing conditions and high pH decrease cadmium bioavailability and speciation. Here, organic matter can also act as both a sink and source of cadmium and microbes perform many mobilization processes including protonation, chelation, and chemical transformation whereas, sorption or precipitation decreases cadmium availability. Continuous exposure to cadmium can result in browning, decomposing and mucilaginous roots, shoot reduction and apical growth of root, chlorosis, and rolling of leaves. Toxicity may inhibit lateral root formation or can result in rigid, twisted, and browning of the main root. Toxicity also affects photosynthesis and the availability of mineral nutrients. In this paper, the remediation techniques of soil polluted by Cd, including biological, chemical and physical remediation are reviewed. The methods of remediation, developing trends, drawbacks, and strengths were also reviewed to provide a reference for the research in this field to date.

Conclusion: Although cadmium toxicity is of great concern, many remediation techniques can be successfully used to mitigate its adverse effects. Phytoremediation, hyperaccumulation, bioremediation, and the application of different amendments to the soil have all been successful in alleviating cadmium bioavailability. Amongst all available techniques, in-situ immobilization with inorganic, organic or clay amendments is an environmentally friendly and cost-effective strategy to remediate cadmium contaminated soils and achieve sustainable agriculture production.

Keywords: Cadmium, mechanism, remediation, soil properties, speciation, uptake mechanism.

Graphical Abstract
[1]
Chowdhary, P.; Bharagava, R.N.; Mishra, S.; Khan, N. Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health. Environmental Concerns and Sustainable Development; Springer: Singapore, 2020, pp. 235-256.
[http://dx.doi.org/10.1007/978-981-13-5889-0_12]
[2]
Raj, D.; Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review. Environ. Monit. Assess., 2020, 192(2), 108.
[http://dx.doi.org/10.1007/s10661-019-8060-5] [PMID: 31927632]
[3]
Rani, A.; Kumar, A.; Lal, A.; Pant, M. Cellular mechanisms of cadmium-induced toxicity: A review. Int. J. Environ. Health Res., 2014, 24(4), 378-399.
[http://dx.doi.org/10.1080/09603123.2013.835032] [PMID: 24117228]
[4]
Jenkins, R.E.; Lorengo, J.A. Butte, Montana: Minerals, mines, and history. Mineral. Rec., 2002, 33(1), 5-70.
[5]
Hembrom, S.; Singh, B.; Gupta, S.K.; Nema, A.K. A Comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: A global perspective. Contemporary Environmental Issues and Challenges in Era of Climate Change; Springer: Singapore, 2020, pp. 33-63.
[http://dx.doi.org/10.1007/978-981-32-9595-7_2]
[6]
Riaz, U.; Murtaza, G.; Farooq, M. Influence of different sewage sludges and composts on growth, yield, and trace elements accumulation in rice and wheat. Land Degrad. Dev., 2018, 29(5), 1343-1352.
[http://dx.doi.org/10.1002/ldr.2925]
[7]
Iram, S.; Ahmad, I.; Akhtar, S. Distribution of heavy metals in peri-urban agricultural areas soils. J. Chem. Soc. Pak., 2012, 34(4), 861-869.
[8]
Khan, M.S.; Zaidi, A.; Wani, P.A.; Oves, M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett., 2009, 7, 1-19.
[http://dx.doi.org/10.1007/s10311-008-0155-0]
[9]
Rauf, A.; Javed, M.; Ubaidullah, M. Heavy metal levels in three major carps (catla catla, labeo rohita and cirrhina mrigala) from the river ravi, pakistan. Pak. Vet. J., 2009, 29(1), 1.
[10]
Kashif, S.R.; Akram, M.; Yaseen, M.; Ali, S. Studies on heavy metals status and their uptake by vegetables in adjoining areas of Hudiara drain in Lahore. Soil Environ., 2009, 28(1), 7-12.
[11]
Ahmad, I. Bioremediation of Cadmium Contaminated Soil with the Help of Organic Manures, 2014.
[12]
Traina, S.J.; Laperche, V. Contaminant bioavailability in soils, sediments, and aquatic environments. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 3365-3371.
[http://dx.doi.org/10.1073/pnas.96.7.3365] [PMID: 10097045]
[13]
Rodriguez, L.; Ruiz, E.; Alonso-Azcarate, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J. Environ. Manage., 2009, 90, 1106-1116.
[http://dx.doi.org/10.1016/j.jenvman.2008.04.007]
[14]
Wang, Q.Y.; Zhou, D.M.; Cang, L.; Li, L.Z.; Wang, P. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities. Environ. Pollut., 2009, 157(8-9), 2203-2208.
[http://dx.doi.org/10.1016/j.envpol.2009.04.013] [PMID: 19427727]
[15]
Tandy, S.; Healey, J.R.; Nason, M.A.; Williamson, J.C.; Jones, D.L. Heavy metal fractionation during the co-composting of biosolids, deinking paper fibre and green waste. Bioresour. Technol., 2009, 100(18), 4220-4226.
[http://dx.doi.org/10.1016/j.biortech.2009.02.046] [PMID: 19386494]
[16]
Gigliotti, G.; Massaccesi, L. Cadmium chemical speciation and absorption in plant in a polluted soil., 2013.
[17]
Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; Reeves, R.D. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil, 2006, 281, 325-337.
[http://dx.doi.org/10.1007/s11104-005-4642-9]
[18]
Sarwar, N.; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric., 2010, 90(6), 925-937.
[http://dx.doi.org/10.1002/jsfa.3916] [PMID: 20355131]
[19]
Gallego, S.M.; Pena, L.B.; Barcia, R.A.; Azpilicueta, C.E.; Iannone, M.F.; Rosales, E.P. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot., 2012, 83, 33-46.
[http://dx.doi.org/10.1016/j.envexpbot.2012.04.006]
[20]
Rinklebe, J.; Shaheen, S.M.; Yu, K. Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. Geoderma, 2016, 270, 21-32.
[http://dx.doi.org/10.1016/j.geoderma.2015.10.011]
[21]
Jackel, U.; Russo, S.; Schnell, S. Enhanced iron reduction by iron supplement: A strategy to reduce methane emission from paddies. Soil Biol. Biochem., 2005, 37, 2150-2154.
[http://dx.doi.org/10.1016/j.soilbio.2005.03.003]
[22]
Han, X.Q.; Xiao, X.Y.; Guo, Z.H.; Xie, Y.H.; Zhu, H.W.; Peng, C.; Liang, Y.Q. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management. Ecotoxicol. Environ. Saf., 2018, 159, 38-45.
[http://dx.doi.org/10.1016/j.ecoenv.2018.04.049] [PMID: 29730407]
[23]
Shaheen, S.M.; Rinklebe, J.; Frohne, T.; White, J.R.; DeLaune, R.D. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere, 2016, 150, 740-748.
[http://dx.doi.org/10.1016/j.chemosphere.2015.12.043] [PMID: 26746419]
[24]
Yu, H.Y.; Liu, C.; Zhu, J.; Li, F.; Deng, D.M.; Wang, Q.; Liu, C. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environ. Pollut., 2016, 209, 38-45.
[http://dx.doi.org/10.1016/j.envpol.2015.11.021] [PMID: 26629644]
[25]
Li, L.; Wu, H.; van Gestel, C.A.; Peijnenburg, W.J.; Allen, H.E. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environ. Pollut., 2014, 188, 144-152.
[http://dx.doi.org/10.1016/j.envpol.2014.02.003] [PMID: 24583712]
[26]
Rafiq, M.T.; Aziz, R.; Yang, X.; Xiao, W.; Rafiq, M.K.; Ali, B.; Li, T. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol. Environ. Saf., 2014, 103, 101-107.
[http://dx.doi.org/10.1016/j.ecoenv.2013.10.016] [PMID: 24418797]
[27]
Li, X.; Meng, D.; Li, J.; Yin, H.; Liu, H.; Liu, X.; Cheng, C.; Xiao, Y.; Liu, Z.; Yan, M. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environ. Pollut., 2017, 231(Pt 1), 908-917.
[http://dx.doi.org/10.1016/j.envpol.2017.08.057] [PMID: 28886536]
[28]
Ren, Z.L.; Tella, M.; Bravin, M.N.; Comans, R.N.J.; Dai, J.; Garnier, J.M.; Sivry, Y.; Doelsch, E.; Straathof, A.; Benedetti, M.F. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem. Geol., 2015, 398, 61-69.
[http://dx.doi.org/10.1016/j.chemgeo.2015.01.020]
[29]
Zaccheo, P.; Crippa, L. Ammonium Nutrition as a Strategy for Cadmium Mobilisation in the Rhizosphere of Sunflower. Plant Soil, 2007, 283(1), 43-56.
[http://dx.doi.org/10.1007/s11104-007-9418-y]
[30]
Hamid, Y.; Tang, L.; Sohail, M.I.; Cao, X.; Hussain, B.; Aziz, M.Z.; Usman, M.; He, Z.L.; Yang, X. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ., 2019, 660, 80-96.
[http://dx.doi.org/10.1016/j.scitotenv.2018.12.419] [PMID: 30639721]
[31]
Khan, M.I.R.; Khan, N.A. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma, 2014, 251(5), 1007-1019.
[http://dx.doi.org/10.1007/s00709-014-0610-7] [PMID: 24477804]
[32]
Clark, G.J.N.; Dodgshun, P.W.G.; Tang, C. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol. Biochem., 2007, 39(11), 2806-2817.
[http://dx.doi.org/10.1016/j.soilbio.2007.06.003]
[33]
Sauv?? S.; Manna, S.; Turmel, M.C.; Roy, A.G.; Courchesne, F. Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ. Sci. Technol., 2003, 37(22), 5191-5196.
[http://dx.doi.org/10.1021/es030059g] [PMID: 14655707]
[34]
Zhang, B.; Sui, F.; Yang, J.; Yang, S.; Zao, P. Effects of inorganic and organic ammendmentson yield and grain cadmium content of wheat and corn. Environ. Eng. Sci., 2015, 33, 11-16.
[http://dx.doi.org/10.1089/ees.2014.0478]
[35]
Bian, R.; Li, L.; Bao, D.; Zheng, J.; Zhang, X.; Zheng, J.; Liu, X.; Cheng, K.; Pan, G. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ. Sci. Pollut. Res. Int., 2016, 23(10), 10028-10036.
[http://dx.doi.org/10.1007/s11356-016-6214-3] [PMID: 26865487]
[36]
Meeinkuirt, W.; Kruatrachue, M.; Pichtel, J.; Pusantisampan, T.; Saengwilai, P. Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptusncamaldulensis. Sci. Asia, 2016, 42, 83-91.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2016.42.083]
[37]
Wang, Y.; Zhu, C.; Yang, H.; Zhang, X. Phosphate fertilizer affected rhizospheric soils: speciation of cadmium and phytoremediation by Chlorophytum comosum. Environ. Sci. Pollut. Res. Int., 2017, 24(4), 3934-3939.
[http://dx.doi.org/10.1007/s11356-016-8134-7] [PMID: 27909925]
[38]
Zhang, P.; Zhang, C.; Pan, L.; Yang, W.; Li, C.; Xu, G. Effects of amendments and water conditions on the chemical speciation of Cd and pb in contaminated paddy soil in a mining area. Soil Sediment Contam., 2016, 25(7), 717-726.
[http://dx.doi.org/10.1080/15320383.2016.1204530]
[39]
Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut., 2014, 186, 195-202.
[http://dx.doi.org/10.1016/j.envpol.2013.11.026] [PMID: 24388869]
[40]
Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Paz-Ferreiro, J.; Beesley, L. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17606-17614.
[http://dx.doi.org/10.1007/s11356-015-4977-6] [PMID: 26146374]
[41]
Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; Liu, D.; Song, Z.; Liu, X.; Wang, H. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage., 2017, 186(Pt 2), 285-292.
[http://dx.doi.org/10.1016/j.jenvman.2016.05.068] [PMID: 27264699]
[42]
Meng, J.; Tao, M.; Wang, L.; Liu, X.; Xu, J. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci. Total Environ., 2018, 633, 300-307.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.199] [PMID: 29574374]
[43]
Majewska, M.; Kurek, E.; Rogalski, J. Microbially mediated cadmium sorption/desorption processes in soil amended with sewage sludge. Chemosphere, 2007, 67(4), 724-730.
[http://dx.doi.org/10.1016/j.chemosphere.2006.10.051 PMID: 17182077]
[44]
Liu, L.; Li, J.; Yue, F.; Yan, X.; Wang, F.; Bloszies, S.; Wang, Y. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 2018, 194, 495-503.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.025] [PMID: 29241123]
[45]
Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol., 2010, 28(3), 142-149.
[http://dx.doi.org/10.1016/j.tibtech.2009.12.002] [PMID: 20044160]
[46]
Wenzel, W.W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil, 2009, 321, 385-408.
[http://dx.doi.org/10.1007/s11104-008-9686-1]
[47]
Uroz, S.; Calvaruso, C.; Turpault, M.P.; Frey-Klett, P. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol., 2009, 17(8), 378-387.
[http://dx.doi.org/10.1016/j.tim.2009.05.004] [PMID: 19660952]
[48]
Ryan, P.; Delhaize, E.; Jones, D. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52, 527-560.
[http://dx.doi.org/10.1146/annurev.arplant.52.1.527 PMID: 11337408]
[49]
Li, W.C.; Ye, Z.H.; Wong, M.H. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant Sedum alfredii. Plant Soil, 2010, 326, 453-467.
[http://dx.doi.org/10.1007/s11104-009-0025-y]
[50]
Braud, A. J??z??quel, K.; Vieille, E.; Tritter, A.; Lebeau, T. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut., 2006, 6, 261-279.
[http://dx.doi.org/10.1007/s11267-005-9022-1]
[51]
Guo, T.R.; Zhang, G.P.; Zhou, M.X.; Wu, F.B.; Chen, J.X. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere, 2007, 17, 505-512.
[http://dx.doi.org/10.1016/S1002-0160(07)60060-5]
[52]
Beolchini, F.; Dell-Anno, A.; De Propris, L.; Ubaldini, S.; Cerrone, F.; Danovaro, R. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere, 2009, 74(10), 1321-1326.
[http://dx.doi.org/10.1016/j.chemosphere.2008.11.057 PMID: 19118863]
[53]
Krantev, A.; Yordanova, R.; Janda, T.; Szalai, G.; Popova, L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol., 2008, 165(9), 920-931.
[http://dx.doi.org/10.1016/j.jplph.2006.11.014] [PMID: 17913285]
[54]
Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot., 2010, 76, 167-179.
[http://dx.doi.org/10.1016/j.sajb.2009.10.007]
[55]
Miyadate, H.; Adachi, S.; Hiraizumi, A.; Tezuka, K.; Nakazawa, N.; Kawamoto, T.; Katou, K.; Kodama, I.; Sakurai, K.; Takahashi, H.; Satoh-Nagasawa, N.; Watanabe, A.; Fujimura, T.; Akagi, H. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol., 2011, 189(1), 190-199.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03459.x PMID: 20840506]
[56]
Rascio, N. DallaVecchia, F; La Rocca, N; Barbato, R; Pagliano, C; Raviolo, M; Gonnelli, C; Gabbrielli, R. Metal accumulation and damage in rice (cv. Vialonenano) seedlings exposed to cadmium. Environ. Exp. Bot., 2008, 62, 267-278.
[http://dx.doi.org/10.1016/j.envexpbot.2007.09.002]
[57]
Siddiqui, S.; Meghvansi, M.; Wani, M.; Jabee, F. Evaluating cadmium toxicity in the root meristem of Pisumsativum L. Acta Physiol. Plant., 2009, 31, 531-536.
[http://dx.doi.org/10.1007/s11738-008-0262-3]
[58]
Popova, L.; Maslenkova, L.; Yordanova, R.; Krantev, A.; Szalai, G.; Janda, T. Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Gen. Appl. Plant Physiol., 2008, 34(34), 133-144.
[59]
Di Cagno, R.; Guidi, L.; De Gara, L.; Soldatini, G.F. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytol., 2001, 151, 627-636.
[http://dx.doi.org/10.1046/j.1469-8137.2001.00217.x]
[60]
Kupper, H.; Parameswaran, A.; Leitenmaier, B.; Trtilek, M.; Setlik, I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol., 2007, 175(4), 655-674.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02139.x PMID: 17688582]
[61]
Baryla, A.; Carrier, P.; Franck, F.; Coulomb, C.; Sahut, C.; Havaux, M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta, 2001, 212(5-6), 696-709.
[http://dx.doi.org/10.1007/s004250000439] [PMID: 11346943]
[62]
Wahid, A.; Ghani, A.; Javed, F. Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron. Sustain. Dev., 2008, 28, 273-280.
[http://dx.doi.org/10.1051/agro:2008010]
[63]
Popova, L.P.; Maslenkova, L.T.; Yordanova, R.Y.; Ivanova, A.P.; Krantev, A.P.; Szalai, G.; Janda, T. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol. Biochem., 2009, 47(3), 224-231.
[http://dx.doi.org/10.1016/j.plaphy.2008.11.007] [PMID: 19091585]
[64]
Chang, Y.; Zouari, M.; Gogorcena, Y.; Lucena, J.J.; Abadia, J. Effects of cadmium and lead on ferric chelate reductase activities in sugar beet roots. Plant Physiol. Biochem., 2003, 41, 999-1005.
[http://dx.doi.org/10.1016/j.plaphy.2003.07.007]
[65]
Metwally, A.; Safronova, V.I.; Belimov, A.A.; Dietz, K.J. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot., 2005, 56(409), 167-178.
[http://dx.doi.org/10.1093/jxb/eri017] [PMID: 15533881]
[66]
Karina, B.B.; Benavides, M.P.; Gallego, S.M.; Tomaro, M.L. Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct. Plant Biol., 2003, 30, 57-64.
[http://dx.doi.org/10.1071/FP02074]
[67]
Yang, Y.J.; Cheng, L.M.; Liu, Z.H. Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci., 2007, 172, 632-639.
[http://dx.doi.org/10.1016/j.plantsci.2006.11.018]
[68]
Astolfi, S.; Zuchi, S.; Passera, C. Effect of cadmium on H+ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci., 2005, 169, 361-368.
[http://dx.doi.org/10.1016/j.plantsci.2005.03.025]
[69]
Matusik, J.; Bajda, T.; Manecki, M. Immobilization of aqueous cadmium by addition of phosphates. J. Hazard. Mater., 2008, 152(3), 1332-1339.
[http://dx.doi.org/10.1016/j.jhazmat.2007.08.010] [PMID: 17868991]
[70]
Zhao, Z.; Zhu, Y.G.; Cai, Y.L. Effects of zinc on cadmium uptake by spring wheat (Triticumaestivum, L.): long-time hydroponic study and short-time 109Cd tracing study. J. Zhejiang Univ. Sci., 2005, 6A, 643-648.
[http://dx.doi.org/10.1631/jzus.2005.A0643]
[71]
Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci., 2011, 180(2), 169-181.
[http://dx.doi.org/10.1016/j.plantsci.2010.08.016] [PMID: 21421358]
[72]
Altinozlu, H.; Karagoz, A.; Polat, T.; Unver, I. Nickel hyper accumulation by natural plants in Turkish serpentine soils. Turk. J. Bot., 2012, 2012(36), 269-280.
[73]
Redjala, T.; Sterckeman, T.; Morel, J.L. Cadmium uptake by roots: Contribution of apoplast and of high- and low-affinity membrane transport systems. Environ. Exp. Bot., 2009, 67, 235-242.
[http://dx.doi.org/10.1016/j.envexpbot.2009.05.012]
[74]
Lu, L.L.; Tian, S.K.; Yang, X.E.; Li, T.Q.; He, Z.L. Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J. Plant Physiol., 2009, 166(6), 579-587.
[http://dx.doi.org/10.1016/j.jplph.2008.09.001] [PMID: 18937997]
[75]
Sebastian, A.; Prasad, M.N.V. Cadmium minimization in rice. A review. Agron. Sustain. Dev., 2013, 34(1), 155-173.
[http://dx.doi.org/10.1007/s13593-013-0152-y]
[76]
Iravani, S.; Varma, R.S. bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain. Chem.& Eng., 2020, 8, 5395-5409.
[http://dx.doi.org/10.1021/acssuschemeng.0c00292]
[77]
Sarin, C.; Sarin, S. Removal of cadmium and zinc from soil using immobilized cell of biosurfactant producing bacteria. Environ. Asia, 2010, 3(2), 49-53.
[http://dx.doi.org/10.14456/ea.2010.23]
[78]
Nsimba, E.B. Development of a biophysical system based on bentonite, zeolite and micro-organisms for remediating gold mine wastewaters and tailings ponds, 2012.
[79]
de Livera, J.; McLaughlin, M.J.; Hettiarachchi, G.M.; Kirby, J.K.; Beak, D.G. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Sci. Total Environ., 2011, 409(8), 1489-1497.
[http://dx.doi.org/10.1016/j.scitotenv.2010.12.028] [PMID: 21277005]
[80]
Karapinar, N.; Donat, R. Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination, 2009, 249(1), 123-129.
[http://dx.doi.org/10.1016/j.desal.2008.12.046]
[81]
Adriano, D.C.; Wenzel, W.W.; Vangronsveld, J.; Bolan, N.S. Role of assisted natural remediation in environmental cleanup. Geoderma, 2004, 122(2-4), 121-142.
[http://dx.doi.org/10.1016/j.geoderma.2004.01.003]
[82]
Bolan, N.S.; Duraisamy, V.P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Soil Res., 2003, 41(3), 533-555.
[http://dx.doi.org/10.1071/SR02122]
[83]
Ok, Y.S.; Kim, S.C.; Kim, D.K.; Skousen, J.G.; Lee, J.S.; Cheong, Y.W. Yang, J.E. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ. Geochem. Health, 2011, 33(1), 23-30.
[http://dx.doi.org/10.1007/s10653-010-9364-0] [PMID: 20449635]
[84]
Kirkham, M.B. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 2006, 137(1), 19-32.
[http://dx.doi.org/10.1016/j.geoderma.2006.08.024]
[85]
Basta, N.; Tabatabai, M.A. Effect of Cropping Systems on Adsorption of Metals By Soils: III. Competitive Adsorption. Soil Sci., 1992, 153(4), 331-337.
[http://dx.doi.org/10.1097/00010694-199204000-00010]
[86]
Shirvani, M.; Shariatmadari, H.; Kalbasi, M. Kinetics of cadmium desorption from fibrous silicate clay minerals: Influence of organic ligands and aging. Appl. Clay Sci., 2007, 37(1-2), 175-184.
[http://dx.doi.org/10.1016/j.clay.2006.12.010]
[87]
Ma, W.; Tobin, J.M. Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochem. Eng. J., 2004, 18(1), 33-40.
[http://dx.doi.org/10.1016/S1369-703X(03)00118-9]
[88]
Milone, M.T.; Sgherri, C.; Clijters, H.; Navari-Izzo, F. Antioxidative response of wheat treated with realistic concentrations off cadmium. Environ. Exp. Bot., 2003, 50, 265-273.
[http://dx.doi.org/10.1016/S0098-8472(03)00037-6]
[89]
Dixit, V.; Pandey, V.; Shyam, R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot., 2001, 52(358), 1101-1109.
[http://dx.doi.org/10.1093/jexbot/52.358.1101] [PMID: 11432926]
[90]
Schutzendubel, A.; Schwanz, P.; Teichman, T.; Gros, K.; Langen-feld-Heyser, R.; Godbold, A.; Polle, A. Cadmium induced changes in antioxidative system, H2O2 contents and differentiation in pine (PinusSylvestris roots. Plant Physiol., 2001, 127, 887-898.
[http://dx.doi.org/10.1104/pp.010318] [PMID: 11706171]
[91]
Iannelli, M.A.; Pietrini, F.; Fiore, L.; Petrilli, L.; Massacci, A. Antioxidant response to cadmium in Phragmitesaustralis plants. Plant Physiol. Biochem., 2002, 40, 977-982.
[http://dx.doi.org/10.1016/S0981-9428(02)01455-9]
[92]
Balestrasse, K.B.; Gardey, L.; Gallego, S.M.; Tomaro, M.L. Response of antioxidant defence system in soyabeen nodules and roots subjected to cadmium stress. Aust. J. Plant Physiol., 2001, 28, 497-504.
[http://dx.doi.org/10.1071/PP00158]
[93]
Shah, K.; Kumar, R.G.; Verma, S.; Dubey, R.S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci., 2001, 161, 1135-1144.
[http://dx.doi.org/10.1016/S0168-9452(01)00517-9]
[94]
Cho, U.; Seo, N. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci., 2004, 168, 113-120.
[http://dx.doi.org/10.1016/j.plantsci.2004.07.021]
[95]
Fornazier, R.F.; Ferreira, R.R.; Vitoria, A.P.; Molina, S.M.G.; Lea, P.J.; Azevedo, R.A. Effect of cadmium on antioxidant enzyme activities in sugarcane. Biol. Plant., 2002, 45, 91-97.
[http://dx.doi.org/10.1023/A:1015100624229]
[96]
Hsu, Y.T.; Kao, C.H. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul., 2004, 42, 227-238.
[http://dx.doi.org/10.1023/B:GROW.0000026514.98385.5c]
[97]
Kidd, P.S.; Llugany, M.; Poschenrieder, C.; Gunse, B.; Barcelo, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot., 2001, 52(359), 1339-1352.
[http://dx.doi.org/10.1093/jexbot/52.359.1339] [PMID: 11432953]
[98]
Barcelo, J.; Poschenrieder, C.; Prasad, M.N.V. Structural and ultrastructural changes in heavy metal exposed plants. Heavy metal stress in plants; Springer: Berlin, Heidelberg, 2004, p. 223.
[http://dx.doi.org/10.1007/978-3-662-07743-6_9]
[99]
Zhang, G.P.; Fukami, M.; Sekimoto, H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. J. Plant Nutr., 2000, 23, 1337-1350.
[http://dx.doi.org/10.1080/01904160009382104]
[100]
Viehweger, K.; Geipel, G. Uranium accumulation and tolerance in Arabidopsis halleri under native versus hydroponic conditions. Environ. Exp. Bot., 2010, 69, 39-46.
[http://dx.doi.org/10.1016/j.envexpbot.2010.03.001]
[101]
Singh, P.K.; Tewari, R.K. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J. Environ. Biol., 2003, 24(1), 107-112.
[PMID: 12974420]
[102]
Al Yemens, M.N. Effect of cadmium, mercury and lead on seed germination and early seedling growth of Vignaambacensis L. Indian J. Plant. Physiol., 2001, 6, 147-151.
[103]
Rana, A.; Ahmad, M. Heavy metal toxicity in legume microsymbiont system. J. Plant Nutr., 2002, 25, 369-386.
[http://dx.doi.org/10.1081/PLN-100108842]
[104]
Phetsombat, S.; Kruatrachue, M.; Pokethitiyook, P.; Upatham, S. Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J. Environ. Biol., 2006, 27(4), 645-652.
[PMID: 17405325]
[105]
Vassilev, A.; Perez-Sanz, A.; Semane, B.; Carteer, R.; Vangronsveld, J. Cadmium accumulation and tolerance of two salix genotypes hydrophonically grown in presence of cadmium. J. Plant Nutr., 2005, 28, 2159-2177.
[http://dx.doi.org/10.1080/01904160500320806]
[106]
Lehotai, N.; Peto, A.; Bajkan, S.; Erdei, L.; Tari, I.; Kolbert, Z. In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol. Plant., 2011, 33, 2199-2207.
[http://dx.doi.org/10.1007/s11738-011-0759-z]
[107]
Garnier, L.; Simon-Plas, F.; Thuleau, P.; Agnel, J.P.; Blein, J.P.; Ranjeva, R.; Montillet, J.L. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ., 2006, 29(10), 1956-1969.
[http://dx.doi.org/10.1111/j.1365-3040.2006.01571.x] [PMID: 16930321]
[108]
Monnet, F.; Vaillant, N.; Vernay, P.; Coudret, A.; Sallanon, H.; Hitmi, A. Relationship between PSII activity, CO2 fixation, and Zn Mn and Mg contents of Loliumperenne under zinc stress. J. Plant Physiol., 2001, 158, 1137-1144.
[http://dx.doi.org/10.1078/S0176-1617(04)70140-6]
[109]
Jali, P.; Pradhan, C.; Das, A.B. A comparative analysis of physiological and biochemical responses to low doses of cadmium in two important varieties of Oryza sativa L. of Odisha, India. Int. J. Sci. Res. (Ahmedabad), 2014, 12(3), 1920-1927.
[110]
Sharma, M.; Gautam, K.H.; Handique, A.K. Toxic heavy metal stress in paddy: Metal accumulation profile and development of a novel stress protein in seed. Indian J. Plant. Physiol., 2006, 11, 227-233.
[111]
Hadi, F.; Ali, N.; Ahmad, A. Enhanced phytoremediation of cadmium-contaminated soil by Parthenium hysterophorus plant: effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Bioremediat. J., 2014, 18(1), 46-55.
[http://dx.doi.org/10.1080/10889868.2013.834871]
[112]
Al-Hakimi, A.M.A. Modification of cadmium toxicity in pea seed-lings by kinetin. Plant Soil Environ., 2007, 53, 129-135.
[http://dx.doi.org/10.17221/2228-PSE]
[113]
Masood, A.; Iqbal, N.; Khan, N.A. Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ., 2012, 35(3), 524-533.
[http://dx.doi.org/10.1111/j.1365-3040.2011.02432.x PMID: 21950968]
[114]
Hsu, Y.T.; Kao, C.H. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ., 2003, 26(6), 867-874.
[http://dx.doi.org/10.1046/j.1365-3040.2003.01018.x PMID: 12803614]
[115]
Shi, G.R.; Cai, Q.S.; Liu, Q.Q.; Wu, L. Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol. Plant., 2009, 31(5), 969-977.
[http://dx.doi.org/10.1007/s11738-009-0312-5]
[116]
Zhang, F.; Zhang, H.; Xia, Y.; Wang, G.; Xu, L.; Shen, Z. Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep., 2011, 30(8), 1475-1483.
[http://dx.doi.org/10.1007/s00299-011-1056-4] [PMID: 21409549]
[117]
Noriega, G.; Caggiano, E.; Lecube, M.L.; Cruz, D.S.; Batlle, A.; Tomaro, M.; Balestrasse, K.B. The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals, 2012, 25(6), 1155-1165.
[http://dx.doi.org/10.1007/s10534-012-9577-z] [PMID: 22886388]
[118]
Laspina, N.V.; Groppa, M.D.; Tomaro, M.L.; Benavides, M.P. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci., 2005, 169, 323-330.
[http://dx.doi.org/10.1016/j.plantsci.2005.02.007]
[119]
Keramat, B.; Kalantari, K.M.; Arvin, M.J. Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr. J. Microbiol. Res., 2009, 3, 240-244.
[120]
Janeczko, A.; Koscielniak, J.; Pilipowicz, M.; Szarek-Lukaszewska, G.; Skoczowski, A. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica, 2005, 43(2), 293-298.
[http://dx.doi.org/10.1007/s11099-005-0048-4]
[121]
Ahammed, G.J.; Choudhary, S.P.; Chen, S.; Xia, X.; Shi, K.; Zhou, Y.; Yu, J. Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J. Exp. Bot., 2013, 64(1), 199-213.
[http://dx.doi.org/10.1093/jxb/ers323] [PMID: 23201830]
[122]
Groppa, M.D.; Tomaro, M.L.; Benavides, M.P. Polyamines as protec-tors against cadmium or copper-induced oxidative damage in sun-flower leaf discs. Plant Sci., 2001, 161, 481-488.
[http://dx.doi.org/10.1016/S0168-9452(01)00432-0]
[123]
Kumar, M.; Bijo, A.J.; Baghel, R.S.; Reddy, C.R.K.; Jha, B. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol. Biochem., 2012, 51, 129-138.
[http://dx.doi.org/10.1016/j.plaphy.2011.10.016] [PMID: 22153249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy