Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis

A Publisher Correction to this article was published on 08 February 2021

This article has been updated

Abstract

Cross-coupling of two alkyl fragments is an efficient method to produce organic molecules rich in sp3-hybridized carbon centres, which are attractive candidate compounds in drug discovery. Enantioselective C(sp3)–C(sp3) coupling is challenging, especially of alkyl electrophiles without an activating group (aryl, vinyl, carbonyl). Here, we report a strategy based on nickel hydride addition to internal olefins followed by nickel-catalysed alkyl–alkyl coupling. This strategy enables the enantioselective cross-coupling of non-activated alkyl halides with alkenyl boronates to produce chiral alkyl boronates. Employing readily available and stable olefins as pro-chiral nucleophiles, the coupling proceeds under mild conditions and exhibits broad scope and high functional-group tolerance. Applications for the functionalization of natural products and drug molecules, as well as the synthesis of chiral building blocks and a key intermediate to (S)-(+)-pregabalin, are demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for enantioselective C(sp3)–C(sp3) cross-coupling.
Fig. 2: Synthetic applications.
Fig. 3: Mechanistic studies of the catalytic enantioselective C(sp3)–C(sp3) cross-coupling.

Similar content being viewed by others

Data availability

Crystallographic data for 3e′ and 4g′ have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2011678 (3e′) and CCDC 1971802 (4g′). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk. All other data supporting the findings of this study, including experimental procedures and compound characterization, NMR, HPLC and X-ray analyses are available within the Article and its Supplementary Information.

Change history

References

  1. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  2. Ritchie, T. J. & Macdonald, S. J. The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discov. Today 14, 1011–1020 (2009).

    CAS  PubMed  Google Scholar 

  3. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867–1886 (2011).

    CAS  Google Scholar 

  6. Rudolph, A. & Lautens, M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009).

    CAS  Google Scholar 

  7. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Glasspoole, B. W. & Crudden, C. M. The final frontier. Nat. Chem. 3, 912–913 (2011).

    CAS  PubMed  Google Scholar 

  9. Owston, N. A. & Fu, G. C. Asymmetric alkyl–alkyl cross-couplings of unactivated secondary alkyl electrophiles: stereoconvergent Suzuki reactions of racemic acylated halohydrins. J. Am. Chem. Soc. 132, 11908–11909 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilsily, A., Tramutola, F., Owston, N. A. & Fu, G. C. New directing groups for metal-catalyzed asymmetric carbon–carbon bond-forming processes: stereoconvergent alkyl–alkyl Suzuki cross-couplings of unactivated electrophiles. J. Am. Chem. Soc. 134, 5794–5797 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zultanski, S. L. & Fu, G. C. Catalytic asymmetric γ-alkylation of carbonyl compounds via stereoconvergent Suzuki cross-couplings. J. Am. Chem. Soc. 133, 15362–15364 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Arp, F. O. & Fu, G. C. Catalytic enantioselective Negishi reactions of racemic secondary benzylic halides. J. Am. Chem. Soc. 127, 10482–10483 (2005).

    CAS  PubMed  Google Scholar 

  13. Fischer, C. & Fu, G. C. Asymmetric nickel-catalyzed Negishi cross-couplings of secondary α-bromo amides with organozinc reagents. J. Am. Chem. Soc. 127, 4594–4595 (2005).

    CAS  PubMed  Google Scholar 

  14. Son, S. & Fu, G. C. Nickel-catalyzed asymmetric Negishi cross-couplings of secondary allylic chlorides with alkylzincs. J. Am. Chem. Soc. 130, 2756–2757 (2008).

    CAS  PubMed  Google Scholar 

  15. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, F., Zhang, Y., Xu, X. & Zhu, S. NiH-catalyzed remote asymmetric hydroalkylation of alkenes with racemic α-bromo amides. Angew. Chem. Int. Ed. 58, 1754–1758 (2019).

    CAS  Google Scholar 

  17. Cordier, C. J., Lundgren, R. J. & Fu, G. C. Enantioconvergent cross-couplings of racemic alkylmetal reagents with unactivated secondary alkyl electrophiles: catalytic asymmetric Negishi α-alkylations of N-Boc-pyrrolidine. J. Am. Chem. Soc. 135, 10946–10949 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mu, X., Shibata, Y., Makida, Y. & Fu, G. C. Control of vicinal stereocenters through nickel-catalyzed alkyl–alkyl cross-coupling. Angew. Chem. Int. Ed. 56, 5821–5824 (2017).

    CAS  Google Scholar 

  19. Deutsch, C., Krause, N. & Lipshutz, B. H. CuH-catalyzed reactions. Chem. Rev. 108, 2916–2927 (2008).

    CAS  PubMed  Google Scholar 

  20. Pirnot, M. T., Wang, Y. M. & Buchwald, S. L. Copper hydride catalyzed hydroamination of alkenes and alkynes. Angew. Chem. Int. Ed. 55, 48–57 (2016).

    CAS  Google Scholar 

  21. Zhu, S., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746–15749 (2013).

    CAS  PubMed  Google Scholar 

  22. Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines. Angew. Chem. Int. Ed. 52, 10830–10834 (2013).

    CAS  Google Scholar 

  23. Wang, Y. M., Bruno, N. C., Placeres, A. L., Zhu, S. & Buchwald, S. L. Enantioselective synthesis of carbo- and heterocycles through a CuH-catalyzed hydroalkylation approach. J. Am. Chem. Soc. 137, 10524–10527 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, Y., Perry, I. B. & Buchwald, S. L. Copper-catalyzed enantioselective addition of styrene-derived nucleophiles to imines enabled by ligand-controlled chemoselective hydrocupration. J. Am. Chem. Soc. 138, 9787–9790 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bandar, J. S., Ascic, E. & Buchwald, S. L. Enantioselective CuH-catalyzed reductive coupling of aryl alkenes and activated carboxylic acids. J. Am. Chem. Soc. 138, 5821–5824 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, X. et al. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun. 7, 11129 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. Bera, S. & Hu, X. Nickel-catalyzed regioselective hydroalkylation and hydroarylation of alkenyl boronic esters. Angew. Chem. Int. Ed. 58, 13854–13859 (2019).

    CAS  Google Scholar 

  28. Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M. & Hu, X. Chemoselective alkene hydrosilylation catalyzed by nickel pincer complexes. Angew. Chem. Int. Ed. 54, 14523–14526 (2015).

    CAS  Google Scholar 

  29. Gaydou, M., Moragas, T., Juliá-Hernández, F. & Martin, R. Site-selective catalytic carboxylation of unsaturated hydrocarbons with CO2 and water. J. Am. Chem. Soc. 139, 12161–12164 (2017).

    CAS  PubMed  Google Scholar 

  30. Zhou, F., Zhu, J., Zhang, Y. & Zhu, S. NiH-catalyzed reductive relay hydroalkylation: a strategy for the remote C(sp3)–H alkylation of alkenes. Angew. Chem. Int. Ed. 57, 4058–4062 (2018).

    CAS  Google Scholar 

  31. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, S.-Z., Börjesson, M., Martin-Montero, R. & Martin, R. Site-selective Ni-catalyzed reductive coupling of α-haloboranes with unactivated olefins. J. Am. Chem. Soc. 140, 12765–12769 (2018).

    CAS  PubMed  Google Scholar 

  33. Sun, S.-Z., Romano, C. & Martin, R. Site-selective catalytic deaminative alkylation of unactivated olefins. J. Am. Chem. Soc. 141, 16197–16201 (2019).

    CAS  PubMed  Google Scholar 

  34. He, Y., Cai, Y. & Zhu, S. Mild and regioselective benzylic C–H functionalization: Ni-catalyzed reductive arylation of remote and proximal olefins. J. Am. Chem. Soc. 139, 1061–1064 (2017).

    CAS  PubMed  Google Scholar 

  35. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    CAS  PubMed  Google Scholar 

  36. Zhang, Y., Han, B. & Zhu, S. Rapid access to highly functionalized alkyl boronates by NiH-catalyzed remote hydroarylation of boron-containing alkenes. Angew. Chem. Int. Ed. 58, 13860–13864 (2019).

    CAS  Google Scholar 

  37. Davidson, M., Hughes, A. K., Marder, T. B. & Wade, K. Contemporary Boron Chemistry (Royal Society of Chemistry, 2000).

  38. Liu, S.-Y. & Stephan, D. W. Contemporary research in boron chemistry. Chem. Soc. Rev. 48, 3434–3435 (2019).

    CAS  PubMed  Google Scholar 

  39. Leonori, D. & Aggarwal, V. K. Stereospecific couplings of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 54, 1082–1096 (2015).

    CAS  Google Scholar 

  40. Sandford, C. & Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. 53, 5481–5494 (2017).

    CAS  Google Scholar 

  41. Collins, B. S. L., Wilson, C. M., Myers, E. L. & Aggarwal, V. K. Asymmetric synthesis of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 56, 11700–11733 (2017).

    CAS  Google Scholar 

  42. Brown, H. C. & Zweifel, G. Hydroboration as a convenient procedure for the asymmetric synthesis of alcohols of high optical purity. J. Am. Chem. Soc. 83, 486–487 (1961).

    Google Scholar 

  43. Hall, D. G. (ed.) Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine (Wiley–VCH, 2006).

  44. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ganić, A. & Pfaltz, A. Iridium-catalyzed enantioselective hydrogenation of alkenylboronic esters. Chem. Eur. J. 18, 6724–6728 (2012).

    PubMed  Google Scholar 

  46. Xi, Y. & Hartwig, J. F. Diverse asymmetric hydrofunctionalization of aliphatic internal alkenes through catalytic regioselective hydroboration. J. Am. Chem. Soc. 138, 6703–6706 (2016).

    CAS  PubMed  Google Scholar 

  47. Zhang, L. et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science 351, 70–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidt, J., Choi, J., Liu, A. T., Slusarczyk, M. & Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 354, 1265–1269 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stoltz, B. M. et al. Potassium tert-butoxide-catalyzed dehydrogenative C–H silylation of heteroaromatics: a combined experimental and computational mechanistic study. J. Am. Chem. Soc. 139, 6867–6879 (2017).

    PubMed  Google Scholar 

  50. Wynn, D. A., Roth, M. M. & Pollard, B. D. The solubility of alkali-metal fluorides in non-aqueous solvents with and without crown ethers, as determined by flame emission spectrometry. Talanta 31, 1036–1040 (1984).

    CAS  PubMed  Google Scholar 

  51. Chen, Z.-M., Hilton, M. J. & Sigman, M. S. Palladium-catalyzed enantioselective redox-relay Heck arylation of 1,1-disubstituted homoallylic alcohols. J. Am. Chem. Soc. 138, 11461–11464 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sawamura, M. & Ito, Y. Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chem. Rev. 92, 857–871 (1992).

    CAS  Google Scholar 

  53. Corriu, R. J. P., Guerin, C., Henner, B. & Wang, Q. Pentacoordinate hydridosilicates: synthesis and some aspects of their reactivity. Organometallics 10, 2297–2303 (1991).

    CAS  Google Scholar 

  54. Bandar, J. S., Pirnot, M. T. & Buchwald, S. L. Mechanistic studies lead to dramatically improved reaction conditions for the Cu-catalyzed asymmetric hydroamination of olefins. J. Am. Chem. Soc. 137, 14812–14818 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Frampton, J. E. Pregabalin: a review of its use in adults with generalized anxiety disorder. CNS Drugs 28, 835–854 (2014).

    CAS  PubMed  Google Scholar 

  57. Mujahid, M. & Muthukrishnan, M. A new enantioselective synthesis of the anticonvulsant drug pregabalin (Lyrica) based on a hydrolytic kinetic resolution method. Chirality 25, 965–969 (2013).

    CAS  PubMed  Google Scholar 

  58. Zheng, B. & Srebnik, M. Preparation and selective cleavage reactions of boron-zirconium 1,1-bimetalloalkanes. Tetrahedron Lett. 34, 4133–4136 (1993).

    CAS  Google Scholar 

  59. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Swiss National Science Foundation. We thank F. Fadaei Tirani for the determination of the X-ray crystal structures of compounds 3e′ and 4g′.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and X.H. conceived the project. S.B. designed and optimized the synthetic method. S.B. and R.M. studied the scope, application and mechanism. All authors analysed the data and co-wrote the manuscript. X.H. directed the research.

Corresponding author

Correspondence to Xile Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information including optimization of reaction conditions (Supplementary Tables 1–6), general procedures, functional group transformations, mechanistic investigations, crystallography details, NMR spectra of compounds, references.

Supplementary Data 1

Compound 3e′.

Supplementary Data 2

Compound 4g′.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, S., Mao, R. & Hu, X. Enantioselective C(sp3)–C(sp3) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis. Nat. Chem. 13, 270–277 (2021). https://doi.org/10.1038/s41557-020-00576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00576-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing