Skip to main content
Log in

Method for Initial Conditions’ Determination to Model Electric Discharge in Water

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The problem of determining initial conditions to ensure the uniqueness of the mathematical modeling of the electric discharge in water was formulated and solved. The method was developed for determining initial values of the discharge characteristics, which ensure their agreement between each other. The method efficiency was exhibited by the example of the electric discharge in water, whose experimental data are known. The effect of the arbitrary parameters of the electric discharge system on the mathematical modeling results was defined. The performed studies made it possible to substantially enhance the adequacy of the mathematical model developed earlier to the processes of the discharge in water at its initial stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Naugol’nykh, K.A. and Roi, N.A., Elektricheskie razryady v vode (Electric Discharges in Water), Moscow: Nauka, 1971.

  2. Pastukhov, V.N., Elektron. Obrab. Mater., 1982, no. 5, pp. 61–65.

  3. Tsarenko, P.I., Rizun, A.R., Zhirnov, M.V., and Ivanov, V.V., Gidrodinamicheskie i teplofizicheskie kharakteristiki moshchnykh podvodnykh iskrovykh razryadov (Hydrodynamic and Thermophysical Characteristics of High-Energy Underwater Spark Discharges), Kiev: Naukova Dumka, 1984.

  4. Krivitskii, E.V., Dinamika elektrovzryva v zhidkosti (Dynamics of Electrical Explosion in Liquid), Kiev: Naukova Dumka, 1986.

  5. Kosenkov, V.M. and Kuskova, N.I., Zh. Tekh. Fiz., 1987, vol. 57, no. 10, pp. 2017–2020.

    Google Scholar 

  6. Kosenkov, V.M., Tech. Phys., 2011, vol. 56, no. 10, p. 1513.

    Article  Google Scholar 

  7. Barbashova, G.A., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 3, pp. 260–263.

    Article  Google Scholar 

  8. Dubovenko, K.V., Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 1, pp. 28–35. https://doi.org/10.3103/S1068375513010031

    Article  Google Scholar 

  9. Gillard, A.J., Golovashchenko, S.F., and Mamutov, A.V., J. Manuf. Process, 2013, vol. 15, no. 2, pp. 201–218.

    Article  Google Scholar 

  10. Melander, A., Delic, A., Bjorkblad, A., Juntunen, P., et al., Int. J. Mater. Form., 2013, vol. 6, pp. 223–231.

    Article  Google Scholar 

  11. Hassannejadasl, A., Daniel, E.G., Golovashchenko, S.F., Javad, S., et al., J. Manuf. Process, 2014, vol. 16, no. 3, pp. 391–404.

    Article  Google Scholar 

  12. Mamutov, V., Golovashchenko, S., and Mamutov, A., Proc. 13th Int. LS-DYNA Conf., June 8–14, 2014, Detroit, 2014, pp. 1–9.

  13. Mamutov, A.V. and Mamutov, V.S., Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., 2014, vol. 190, no. 1, pp. 101–107.

    Google Scholar 

  14. Hassannejadasl, A., Simulation of electrohydraulic forming using anisotropic, rate-dependent plasticity models, PhD Thesis, Windsor, ON: Univ. of Windsor, 2014. https://core.ac.uk/download/pdf/72787148.pdf

    Google Scholar 

  15. Kosenkov, V.M. and Bychkov, V.M., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 2, pp. 167–173.

    Article  Google Scholar 

  16. Kosenkov, V.M. and Bychkov, V.M., Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 1, pp. 89–96. https://doi.org/10.3103/S1068375519010113

    Article  Google Scholar 

  17. Kosenkov, V.M., Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 3, pp. 334–342. https://doi.org/10.3103/S1068375520030102

  18. Krinberg, I.A., J. Appl. Mech. Tech. Phys., 1965, vol. 6, pp. 98–102.

    Article  Google Scholar 

  19. Feynman, R.P. and Hibbs, A.R., Quantum Mechanics and Path Integrals, New York: McGraw-Hill, 1965.

    MATH  Google Scholar 

  20. Zhdanov, V.M., Yavleniya perenosa v gazakh i plazme (Transport Phenomena in Gases and Plasma), Moscow: Mosk. Inzh.-Fiz. Inst., 2008.

  21. Godunov, S.K., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Problems of Gas Dynamics), Moscow: Nauka, 1976.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kosenkov.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosenkov, V.M. Method for Initial Conditions’ Determination to Model Electric Discharge in Water. Surf. Engin. Appl.Electrochem. 56, 712–718 (2020). https://doi.org/10.3103/S1068375520060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520060083

Keywords:

Navigation