Skip to main content
Log in

Chemistry and Manufacturing Technology of Electronic Ink for Electrophoretic Displays (A Review)

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

This review examines the state of art in research aimed at the development of electronic paper (electronic ink, e-ink), namely, the general principles to design a colloidal system with desired properties, having sedimentation and aggregate stability, consisting of a dispersed phase (reverse-micellar nanoreactors based on pigments) and a dispersion phase (nonpolar solvent/surfactant). More specifically, the subject matters of the review are: general methods and approaches used in the synthesis and modification of colloidal pigment particles; the electrophoretic properties of various dispersion systems comprising these particles (one-, two-, and three-color e-inks), which depend on the size of modified pigments, their zeta potentials, electrophoretic mobility, the presence of surfactants, dispersants, and emulsifiers; the chemical, physicochemical, and physicomechanical methods for microencapsulation of ink dispersions; and methods for manufacturing electrophoretic cells, including those used in micron-level cell design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. H. L. Guo and X. P Zhao, Opt. Mater. 26, 3 (2004).

    Article  Google Scholar 

  2. J. P. Wang, X. P. Zhao, H. L. Guo, et al., Opt. Mater. 30, 8 (2008).

    Google Scholar 

  3. R. Dai, G. Wu, W. Li, et al., Colloids Surf. A: Physicochem. Eng. Asp. 362, 1 (2010).

    Article  Google Scholar 

  4. J. Lee, J. Hong, D. W. Park, et al., Opt. Mater. 32, 4 (2010).

    Article  Google Scholar 

  5. P. Yin, G. Wu, H. Z. Chen, et al., Synth. Met. 161, 15 (2011).

    Google Scholar 

  6. P. Yin, G. Wu, R. Y. Dai, et al., J. Colloid and Interface Sci. 388, 1 (2012).

    Article  Google Scholar 

  7. J. Li, L. Deng, J. Xing, et al., Appl. Surf. Sci. 258, 7 (2012).

    Google Scholar 

  8. S. Liu, G. Wu, H. Z. Chen, et al., Synth. Met. 162, 1 (2012).

    Article  Google Scholar 

  9. X. Y. Hou, S. G. Bian, J. F. Chen, et al., Opt. Mater. 35, 2 (2012).

    Article  Google Scholar 

  10. C. Sun, Y. Q. Feng, B. Zhang, et al., Opt. Mater. 35, 7 (2013).

    Google Scholar 

  11. J. Han, X. Li, Y. Feng, et al., Opt. Mater. 37 (2014).

  12. J. Y. Kim, J. Y. Oh, K. S. Suh. Carbon 66 (2014).

  13. V. Maiskaya, Elektron.: Nauka, Tekhnol., Biznes 5 (2009).

  14. V. Khort, Khim. Khim. 8 (2009).

  15. S. K. Eshkalak and M. Khatibzadeh, Proceedings of the International Conference “Nanomaterials: Applications and Properties” 3, 2 (2014).

  16. I. Morrison, Proceedings of ACS National Meeting (New Orleans, 2008).

  17. B. J. Bleier, B. A. Yezer, B. J. Freireich, et al., J. Colloid Interface Sci. 493 (2017).

  18. H. Kamiya and M. Iijima, Sci. Technol. Adv. Mater. 11 (2010).

  19. J. Shi, in Steric Stabilization (Columbus, USA, 2002).

    Google Scholar 

  20. I. D. Morrison, Colloids Surf. A: Physicochem. Eng. Asp. 71, 1 (1993).

    Article  CAS  Google Scholar 

  21. G. N. Smith and J. Eastoe, Phys. Chem. Chem. Phys.15 (2013).

  22. M. F. Hsu, E. R. Dufresne, and D. A. Weitz, Langmuir 21, 11 (2005).

    Google Scholar 

  23. W. H. Briscoe and R. G. Horn, Langmuir 18, 10 (2002).

    Article  Google Scholar 

  24. H. F. Eicke and H. Christen, J. Colloids Interface Sci. 48, 1 (1974).

    Article  Google Scholar 

  25. Kh. F. Aike, in Micelle Formation, Solubilization, and Microemulsions (Mir, Moscow, 1980) [in Russian].

  26. S. K. Sainis, V. Germain, C. O. Mejean, et al., Langmuir 24, 4 (2008).

    Google Scholar 

  27. C. E. Espinosa, Q. Guo, V. Singh, et al., Langmuir 26, 22 (2010).

    Article  Google Scholar 

  28. M. Gacek, D. Bergsman, E. Michor, et al., Langmuir 28, 31 (2012).

    Article  Google Scholar 

  29. J. W. Park, Y. J. Park, and C. H. Jun, Chem. Commun. 47 (2011).

  30. H. Heinz, C. Pramanik, O. Heinz, et al., Surface Sci. Rep. 72 (2017).

  31. R. J. Pugh, T. Matasunaga, and F. M. Fowkes, Colloids Surf. 7 (1983).

  32. B. Faure, G. Salazar-Alvarez, A. Ahniyaz, et al., Sci. Technol. Adv. Mater. 14 (2013).

  33. RF Patent 216. 015. 481 (2016).

  34. M. J. Rosen, J. Am. Oil Chem. Soc. 52 (1975).

  35. H. Zeng, W. Cai, J. Hu, et al., Appl. Phys. Lett. 88, (2006).

  36. K. Rezwan, L. P. Meier, M. Rezwan, et al., Langmuir 20 (2004).

  37. D. Ganguli and M. Ganguli, in A Micrometer to Nanometer Landscape (Springer, 2012), p. 207.

    Google Scholar 

  38. O. A. Shilova, A. M. Nikolaev, A. S. Kovalenko, et al., Russ. J. Inorg. Chem. 65, 426 (2020). https://doi.org/10.1134/S0036023620030134

    Article  CAS  Google Scholar 

  39. H. Abe, K. Kuruma, T. Murakami, et al., IOP Conf. Ser.: Mater. Sci. Eng. 479 (2019).

  40. X. Wang, J. Zhuang, Q. Peng, et al., Nature 437 (2005).

  41. Z. Jing and S. Wu, Mater. Lett. 58 (2004).

  42. A. H. Lu, E. L. Salabas, and F. Schuth, Angew. Chem. Int. Ed. 46 (2007).

  43. A. G. Roca, M. P. Morales, and C. J. Serna, IEEE Trans. Magn. 42, 10 (2006).

    Article  Google Scholar 

  44. S. Sun and H. Zeng, J. Am. Chem. Soc. 126 (2004).

  45. X. Li, H. Si, J. Z. Niu, et al., Dalton Trans. 39, 45 (2010).

    CAS  Google Scholar 

  46. K. S. Kim, J. Y. Lee, B. J. Park, et al., Colloid Polymer Sci. 284 (2006).

  47. Y. Lee, C. Kim, W. Jang, et al., Polymer 42 (2001).

  48. H. Choi, Y. Lee, C. Kim, et al., J. Mater. Sci. Lett. 19 (2000).

  49. W. Li, J. Wang, X. Wang, et al., Colloid Polymer Sci. 285, 1691 (2007).

    Article  CAS  Google Scholar 

  50. S. J. Park, Y. S. Shin, and J. R. Lee, J. Colloid Interface Sci. 241, 502 (2001).

    Article  CAS  Google Scholar 

  51. H. Guo, X. Zhao, and J. Wang, J. Colloid Interface Sci. 284, 646 (2005).

    Article  CAS  Google Scholar 

  52. F. Podczeck, S. Blackwell, M. Gold, et al., Int. J. Pharm. 188, 59 (1999).

    Article  CAS  Google Scholar 

  53. Patent US 4900551 (1990).

  54. H. L. Guo and X. P. Zhao, Opt. Mater. 26, 297 (2004).

    Article  CAS  Google Scholar 

  55. J. H. Kim, H. J. Oh, N. H. Lee, et al., Solid State Phenom. 121123 (2007).

  56. K. Kim, J. H. Sung, J. Y. Lee, et al., Mol. Cryst. Liq. Cryst. 445 (2006).

  57. S. J. Kim, S. D. Park, and Y. H. Jeong, J. Am. Ceram. Soc. 82, 4 (1999).

    Google Scholar 

  58. C. Yang and C. Yang, J. Mater. Sci: Mater Electron. (2014).

  59. Y. Fang, J. Wang, L. Li, et al., J. Mater. Chem. C (2016).

  60. S. Wang, Y. Mei, X. Li, et al., Mater. Lett. 74 (2012).

  61. I. B. Jang, J. H. Sung, H. J. Choi, et al., Synth. Met. 152 (2005).

  62. G. Wu, P. Yin, R. Dai, M. Wang, et al., J. Mater. Res. 27, 4 (2012).

    Google Scholar 

  63. C. A. Kim, M. J. Joung, S. D. Ahn, et al., Synth. Met. 151 (2005).

  64. D. Liandong,Z. Jing,and D. Anjie, Trans. Tianjin Univ. 21 (2015).

  65. D. Li, Y. Le, X. Y. Hou, et al., Synth. Met. 161 (2011).

  66. S. K. Eshkalak, E. Kowsari, A. Chinnappan, et al., J. Mater. Sci.: Mater. Electron. 30 (2019).

  67. X. Meng, L. Qiang, X. Su, et al., ACS Appl. Mater. Interfaces 5 (2013).

  68. RF Patent 2541013 (2015).

  69. H. Liu, S. Wang, X. Li, et al., Proceedings of the 2013 Annual Meeting of the American Electrophoresis Society (AES), San-Francisco (2013).

  70. M. Kim, K. J. Park, K. U. Lee, et al., Chem. Eng. Sci. 119 (2014).

  71. W. Wang, A. Zheng, Y. Jiang, et al., RSC Adv. 9 (2019).

  72. P. S. Popovetski, A. I. Bulavchenko, and A. Yu. Manakov, J. Opt. Technol. 78, 7 (2011).

    Article  Google Scholar 

  73. C. Jablonski, G. Grundlera, U. Pielesa, et al., Chimia 70, 5 (2016).

    Article  Google Scholar 

  74. S. Latour and J. D. Wuest, Synthesis 742 (1987).

  75. B. S. W. Oh, C. W. Kim, H. J. Cha, et al., Adv. Mater. 21 (2009).

  76. J. Yin, X. Qian, M. Shi, et al., Inorg. Chem. Commun. 6 (2003).

  77. F. Caruso, R. A. Caruso, and H. Mohwald, Science 282 (1998).

  78. P. Murau and B. Singer, J. Appl. Phys. 49 (1978).

  79. P. Murau, B. Singer, and P. Scholten, J. Electrochem. Soc. 123 (1976).

  80. I. D. Morrison, Colloids Surf. A: Physicochem. Eng. Asp. 71 (1993).

  81. H. Wang and W. Geng, Res. Chem. Intermediates 37, 2 (2011).

    Google Scholar 

  82. Q. Zhao, T. Tan, P. Qi, et al., Applied Surface Sci. 257 (2011).

  83. P. Yin, G. Wu, W. Qin, et al., J. Mater. Chem. C, 1 (2013).

  84. J. Yuan, S. Zhou, B. You, et al., Chem. Mater. 17 (2005).

  85. H. L. Guo and X. P. Zhao, Opt. Mater. 26 (2004).

  86. Z. Q. Wen, Y. Q. Feng, and X. G. Li, Dyes Pigm. 92 (2011).

  87. R. Qiao, X. L. Zhang, R. Qiu, et al., Colloids Surf. A: Physicochem. Eng. Asp. 313–314 (2008).

  88. S. W. Oh, C. W. Kim, H. J. Cha, et al., Adv. Mater. 21 (2009).

  89. Z. Wen, Y. Feng, X. Li, et al., Curr. Appl. Phys. 12 (2012).

  90. V. D. Solodovnik, in Microencapsulation (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  91. G. Wu, R. Y. Dai, W. G. Li, et al., Wang. Curr. Appl. Phys. 11 (2011).

  92. X. M. Liu, J. Hea, S. Y. Liu, et al., Mater. Sci. Eng. B 185 (2014).

  93. L. S. Park, J. W. Park, H. Y. Choi, et al., Curr. Appl. Phys. 6 (2006).

  94. Y. Fang, S. Wang, Y. Xiao, et al., Appl. Surf. Sci. 317 (2014).

  95. M. Kima, K. J. Park, K. U. Lee, et al., Chem. Eng. Sci. 119 (2014).

  96. Z. L. Zhou, Q. Liu, G. Combs, et al., Development of Bistable Electronic Inks for Reflective Color Media (Hewlett-Packard, 2012).

    Google Scholar 

  97. B. Comiskey, J. D. Albert, H. Yoshizawa, et al., Nature 394, 253 (1998).

    Article  CAS  Google Scholar 

  98. Patent US 6517618 B2 (2003).

  99. Y. Nobuhide, O. Hideki, I. Yui, et al., SID 20, 3 (2012).

    Google Scholar 

  100. S. Inoue, T. T. Phan, T. Hori, et al., Phys. Stat. Solidi A 212, 10 (2015).

    Article  Google Scholar 

Download references

Funding

The work was financed by the Government Assignment to the Institute of Silicate Chemistry, Russian Academy of Sciences, in the field of fundamental research and by the Russian Scientific Foundation (project No. 19-13-00442) in part of analysis of synthetic methods to prepare iron oxide and titanium dioxide nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ivanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.G., Khamova, T.V., Gubanova, N.N. et al. Chemistry and Manufacturing Technology of Electronic Ink for Electrophoretic Displays (A Review). Russ. J. Inorg. Chem. 65, 1985–2005 (2020). https://doi.org/10.1134/S003602362013001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362013001X

Keywords:

Navigation