Skip to main content
Log in

Influence of Synthesis Method on the Properties of Carbon Fiber Precursors Based on Acrylonitrile and Acrylic Acid Copolymers

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

A comparative study of the thermal behavior of acrylonitrile-acrylic acid copolymers synthesized by conventional radical polymerization and reversible addition-fragmentation chain transfer polymerization to deep conversions with different modes of introducing acrylic acid into the reaction is carried out. It is shown that, at similar average compositions of conventional copolymers, the difference in their compositional heterogeneity leads to an unpredictable change in the activation energy of cyclization, the degree of stabilization, and the thermal stability of the copolymers. In contrast, for copolymers of the same average composition obtained under reversible chain transfer conditions, a change in the chain microstructure, that is, the distribution of acrylic acid units along the chain, makes it possible to control the rate of cyclization while maintaining a high thermal stability of the copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. S. Zhang, L. Yin, J. Wang, W. Zhang, L. Zhang, and X. Zhu, Polymers 9 (12), 26 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  2. J. Jiang, X. Lu, and Y. Lu, J. Appl. Polym. Sci. 116, 2610 (2010).

    CAS  Google Scholar 

  3. G. S. Krishnan, A. Burkanudeen, N. Murali, and H. Phadnis, Green Chem. 14, 1778 (2012).

    Article  CAS  Google Scholar 

  4. E. V. Chernikova, R. V. Toms, N. I. Prokopov, V. R. Duflot, A. V. Plutalova, S. A. Legkov, and V. I. Gomzyak, Polym. Sci., Ser. B 59, 28 (2017).

    Article  CAS  Google Scholar 

  5. D. F. Grishin and I. D. Grishin, Fibre Chem. 50, 514 (2019).

    Article  CAS  Google Scholar 

  6. Y. I. Estrin, A. E. Tarasov, A. A. Grishchuk, A. V. Chernyak, and E. R. Badamshina, RSC Adv. 6, 106064 (2016).

  7. J. Kaur, K. Millington, and S. Smith, J. Appl. Polym. Sci. 133, 43963 (2016).

    Google Scholar 

  8. Q. Gao, M. Jing, C. Wang, S. Zhao, M. Chen, and J. Qin, J. Macromol. Sci., Part B: Phys. 1, 128 (2017).

    Google Scholar 

  9. M. Kirsten, J. Meinl, K. Schönfeld, A. Michaelis, and C. Cherif, J. Appl. Polym. Sci. 133, 43698 (2016).

    Article  CAS  Google Scholar 

  10. Y. Tian, K. Han, and W. Zhang, Mater. Lett. 92, 119 (2013).

    Article  CAS  Google Scholar 

  11. B. L. Batchelor, S. F. Mahmood, and M. Jung, Carbon 98, 681 (2016).

    Article  CAS  Google Scholar 

  12. S. Sayyar, J. Moskowitz, B. Fox, J. Wiggins, and G. Wallace, J. Appl. Polym. Sci. 136, 47932 (2019).

    Article  CAS  Google Scholar 

  13. E. A. Morris, M. C. Weisenberger, S. B. Bradley, M. G. Abdallah, S. J. Mecham, P. Pisipati, and J. E. McGrath, Polymer 55, 6471 (2014).

    Article  CAS  Google Scholar 

  14. Carbon Fibers and Their Composites, Ed. by P. Morgan (Taylor and Francis, New York, 2005).

    Google Scholar 

  15. S. Chand, J. Mater. Sci. 5, 1303 (2000).

    Article  Google Scholar 

  16. Carbon Fiber Composites, Ed. by D. L. Chung (Butterworth-Heinemann, Newton, 1994).

    Google Scholar 

  17. X. Huang, Materials 2, 2369 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  18. D. D. Edie, Carbon 36, 345 (1998).

    Article  CAS  Google Scholar 

  19. P. Bajaj, D. K. Paliwal, and A. K. Gupta, J. Appl. Polym. Sci. 49, 823 (1993).

    Article  CAS  Google Scholar 

  20. R. C. Bansal and J. B. Donnet, in Comprehensive Polymer Science (Pergamon Press, London, 1989), Vol. 6, p. 501.

    Google Scholar 

  21. J. Liu, L. He, S. Ma, J. Liang, Y. Zhao, and H. Fong, Polymer 61, 20 (2015).

    Article  CAS  Google Scholar 

  22. S. Dalton, F. Heatley, and P. M. Budd, Polymer 40, 5531 (1999).

    Article  CAS  Google Scholar 

  23. A. Gupta and I. R. Harrison, Carbon 35, 809 (1997).

    Article  CAS  Google Scholar 

  24. L. A. Beltz and R. R. Gustafson, Carbon 34, 561 (1996).

    Article  CAS  Google Scholar 

  25. Z. Wangxi, L. Jie, and W. Gang, Carbon 41, 2805 (2003).

    Article  CAS  Google Scholar 

  26. R. C. Bansal and J. B. Donnet, in Comprehensive Polymer Science (Pergamon Press, London, 1989), Vol. 6, p. 501.

    Google Scholar 

  27. B. Saha and G. C. Schatz, J. Phys. Chem. B 116, 4684 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. J. D. Moskowitz and J. S. Wiggins, Polymer 84, 311 (2016).

    Article  CAS  Google Scholar 

  29. D. F. Grishin and I. D. Grishin, Russ. Chem. Rev. 84, 712 (2015).

    Article  CAS  Google Scholar 

  30. E. V. Chernikova, Z. A. Poteryaeva, S. S. Belyaev, I. E. Nifant’ev, A. V. Shlyakhtin, Yu. V. Kostina, A. S. Cherevan’, M. N. Efimov, G. N. Bondarenko, and E. V. Sivtsov, Polym. Sci., Ser. B 53, 391 (2011).

    Article  CAS  Google Scholar 

  31. E. V. Chernikova, R. V. Toms, A. Yu. Gervald, and N. I. Prokopov, Polym. Sci., Ser. C 62, 17 (2020).

    Article  CAS  Google Scholar 

  32. J. M. Spörl, A. Ota, R. Beyer, T. Lehr, A. Muller, F. Hermanutz, and M. R. Buchmeiser, J. Polym. Sci., Part A: Polym. Chem. 52, 1322 (2014).

    Article  CAS  Google Scholar 

  33. J. Spörl, F. Hermanutz, and M. Buchmeiser, Int. Fiber J. 28, 24 (2014).

    Google Scholar 

  34. E. V. Chernikova, S. M. Kishilov, A. V. Plutalova, Yu. V. Kostina, G. N. Bondarenko, A. A. Baskakov, S. O. Il’in, and A. Yu. Nikolaev, Polym. Sci., Ser. B 56, 553 (2014).

    Article  CAS  Google Scholar 

  35. J. D. Moskowitz, B. A. Abel, C. L. McCormick, and J. S. Wiggins, J. Polym. Sci., Part A: Polym. Chem. 54, 553 (2016).

    Article  CAS  Google Scholar 

  36. J. Cai, J. Y. McDonnell, C. Brackley, and L. O’Brien, Mater. Today Commun. 9, 22 (2016).

    Article  CAS  Google Scholar 

  37. E. V. Chernikova and E. V. Sivtsov, Polym. Sci., Ser. B 59, 117 (2017).

    Article  CAS  Google Scholar 

  38. E. Rizzardo, J. Chiefari, R. T. A. Mayadunne, G. Moad, and S. H. Thang, ACS Symp. Ser. 768, 278 (2000).

    Article  CAS  Google Scholar 

  39. M. Al-Harthi, M. J. Khan, S. H. Abbasi, and J. B. P. Soares, Macromol. React. Eng. 3, 148 (2009).

    Article  CAS  Google Scholar 

  40. R. V. Toms, M. S. Balashov, A. A. Shaova, A. Y. Gerval’d, N. I. Prokopov, A. V. Plutalova, and E. V. Chernikova, Polym. Sci., Ser. B 62, 102 (2020).

    Article  CAS  Google Scholar 

  41. Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1999).

    Google Scholar 

  42. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  43. Q. Ouyang, L. Cheng, H. Wang, and K. Li, Polym. Degrad. Stab 93, 1415 (2008).

    Article  CAS  Google Scholar 

  44. G. L. Collins, N. W. Thomas, and G. E. Williams, Carbon 26, 671 (1988).

    Article  CAS  Google Scholar 

  45. A. I. Ezrielev, E. O. Brokhina, and E. S. Roskin, Vysokomol. Soedin., Ser. A 11, 1670 (1969).

    CAS  Google Scholar 

  46. P. Cieplak, E. Megiel, and A. Kaim, J. Polym. Sci., Part A: Polym. Chem. 40, 3592 (2002).

    Article  CAS  Google Scholar 

  47. M. M. Alam, H. Peng, K. S. Jack, D. J. T. Hill, and A. K. Whittaker, J. Polym. Sci., Part A: Polym. Chem. 55, 919 (2017).

    Article  CAS  Google Scholar 

  48. E. L. Madruga, Prog. Polym. Sci. 27, 1879 (2002).

    Article  CAS  Google Scholar 

  49. J. Hao, Y. Liu, and C. Lu, Polym. Degrad. Stab. 147, 89 (2018).

    Article  CAS  Google Scholar 

  50. S. H. Bahrami, P. Bajaj, and K. Sen, J. Appl. Polym. Sci. 88, 685 (2003).

    Article  CAS  Google Scholar 

  51. R. Devasia, C. P. R. Nair, P. Sivadasan, B. K. Katherine, and K. N. Ninan, J. Appl. Polym. Sci. 88, 915 (2003).

    Article  CAS  Google Scholar 

  52. G. T. Sivy and M. M. Coleman, Carbon 19, 127 (1981).

    Article  CAS  Google Scholar 

  53. E. V. Loginova, I. V. Mikheev, D. S. Volkov, and M. A. Proskurnin, Anal. Methods 8, 371 (2016).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-17004-mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chernikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toms, R.V., Balashov, M.S., Gervald, A.Y. et al. Influence of Synthesis Method on the Properties of Carbon Fiber Precursors Based on Acrylonitrile and Acrylic Acid Copolymers. Polym. Sci. Ser. B 62, 660–670 (2020). https://doi.org/10.1134/S156009042006010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042006010X

Navigation