Skip to main content
Log in

Synthesis of New of Norbornene–1,5-Bis(hexenyl)hexamethyltrisiloxane Copolymers via Olefin Metathesis Reaction

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

New copolymers of norbornene and 1,5-bis(hexenyl-5)-1,1,3,3,5,5-hexamethyltrisiloxane containing flexible siloxane and rigid norbornene fragments in the main chain are synthesized. Synthesis is carried out using three types of olefin metathesis reactions: the ring-opening metathesis polymerization of norbornene, the metathesis of nonconjugated diene 1,5-bis(hexenyl-5)-1,1,3,3,5,5-hexamethyltrisiloxane, and the interchain macromolecular cross-metathesis between polynorbornene and siloxane-containing polyene. The latter reaction is studied for the first time. With its help, new statistical multiblock copolymers of norbornene and 1,5-bis(hexenyl-5)-1,1,3,3,5,5-hexamethyltrisiloxane with different average block lengths are obtained and characterized by 1H and 13C NMR and IR spectroscopy. The effect of the copolymer structure on their thermal properties is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. Yilgör and J. E. McGrath, Polysiloxane Copolymers/Anionic Polymerization (Springer, Berlin; Heidelberg, 1988), p. 1.

    Google Scholar 

  2. P. P. Matloka, J. C. Sworen, F. Zuluaga, and K. B. Wagener, Macromol. Chem. Phys. 206, 218 (2005).

    Article  CAS  Google Scholar 

  3. N. Mukherjee and R. M. Peetz, Macromolecules 41, 6677 (2008).

    Article  CAS  Google Scholar 

  4. K. R. Brzezinska, R. Schitter, and K. B. Wagener, J. Polym. Sci., Part A: Polym. Chem. 38, 1544 (2000).

    Article  CAS  Google Scholar 

  5. D. W. Smith and K. B. Wagener, Macromolecules 26, 1633 (1993).

    Article  CAS  Google Scholar 

  6. P. A. Delgado, P. Matloka, F. Zuluaga, and K. B. Wagener, J. Polym. Sci., Part A: Polym. Chem. 50, 431 (2012).

    Article  CAS  Google Scholar 

  7. H. Li, L. Caire da Silva, M. D. Schulz, G. Rojas, and K. B. Wagener, Polym. Int. 66, 7 (2017).

    Article  CAS  Google Scholar 

  8. P. P. Matloka, Z. Kean, and K. B. Wagener, J. Polym. Sci., Part A: Polym. Chem. 48, 1866 (2010).

    Article  CAS  Google Scholar 

  9. P. A. Delgado, F. Zuluaga, P. Matloka, and K. B. Wagener, J. Polym. Sci., Part A: Polym. Chem. 47, 5180 (2009).

    Article  CAS  Google Scholar 

  10. E. Małecka, B. Marciniec, C. Pietraszuk, A. Cameron Church, and K. B. Wagener, J. Mol. Catal. A: Chem. 190, 27 (2002).

    Article  Google Scholar 

  11. K. R. Brzezinska, K. B. Wagener, and G. T. Burns, J. Polym. Sci., Part A: Polym. Chem. 37, 849 (1999).

    Article  CAS  Google Scholar 

  12. D. W. Smith and K. B. Wagener, Macromolecules 26, 3533 (1993).

    Article  CAS  Google Scholar 

  13. B. Marciniec and M. Majchrzak, J. Organomet. Chem. 686, 228 (2003).

    Article  CAS  Google Scholar 

  14. K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization (Acad. Press, London, 1997).

    Google Scholar 

  15. E. Finkelshtein, M. Gringolts, M. Bermeshev, P. Chapala, and Y. Rogan, in Membrane Materials for Gas and Vapor Separation, Ed. by E. Finkelshtein and Y. Yampolskii (Wiley, Chichester, 2017), p. 143.

    Google Scholar 

  16. N. A. Belov, M. L. Gringolts, A. A. Morontsev, L. E. Starannikova, Y. P. Yampolskii, and E. S. Finkelstein, Polym. Sci., Ser. B 59, 560 (2017).

    Article  CAS  Google Scholar 

  17. A. A. Morontsev, V. A. Zhigarev, R. Y. Nikiforov, N. A. Belov, M. L. Gringolts, E. S. Finkelshtein, and Y. P. Yampolskii, Eur. Polym. J. 99, 340 (2018).

    Article  CAS  Google Scholar 

  18. N. L. Wagner, F. J. Timmers, D. J. Arriola, G. Jueptner, and B. G. Landes, Macromol. Rapid Commun. 29, 1438 (2008).

    Article  CAS  Google Scholar 

  19. H. Otsuka, T. Muta, M. Sakada, T. Maeda, and A. Takahara, Chem. Commun. 2009, 1073 (2009).

    Article  CAS  Google Scholar 

  20. T. Maeda, S. Kamimura, T. Ohishi, A. Takahara, and H. Otsuka, Polymer (Guildf.) 55, 6245 (2014).

    Article  CAS  Google Scholar 

  21. T. Ohishi, K. Suyama, S. Kamimura, M. Sakada, K. Imato, S. Kawahara, A. Takahara, and H. Otsuka, Polymer (Guildf.) 78, 145 (2015).

    Article  CAS  Google Scholar 

  22. M. R. Radlauer, M. E. Matta, and M. A. Hillmyer, Polym. Chem 7, 6269 (2016).

    Article  CAS  Google Scholar 

  23. S. Daniele, A. Mariconda, G. Guerra, P. Longo, and L. Giannini, Polymer (Guildf.) 130, 143 (2017).

    Article  CAS  Google Scholar 

  24. M. L. Gringolts, Y. I. Denisova, G. A. Shandryuk, L. B. Krentsel, A. D. Litmanovich, E. S. Finkelshtein, and Y. V. Kudryavtsev, RSC Adv. 5, 316 (2015).

  25. Y. I. Denisova, M. L. Gringolts, L. B. Krentsel’, G.A. Shandryuk, A. D. Litmanovich, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 58, 292 (2016).

    Article  CAS  Google Scholar 

  26. Y. I. Denisova, M. L. Gringolts, A. S. Peregudov, L. B. Krentsel, E. A. Litmanovich, A. D. Litmanovich, E. S. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 11, 1796 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. I. Denisova, M. L. Gringolts, A. V. Roenko, G. A. Shandryuk, E. S. Finkelshtein, and Y. V. Kudryavtsev, Mendeleev Commun. 27, 416 (2017).

    Article  CAS  Google Scholar 

  28. G. A. Shandryuk, Y. I. Denisova, M. L. Gringolts, L. B. Krentsel, A. D. Litmanovich, E. S. Finkelshtein, and Y. V. Kudryavtsev, Eur. Polym. J. 86, 143 (2017).

    Article  CAS  Google Scholar 

  29. Yu. I. Denisova, M. L. Gringolts, L. B. Krentsel’, G. A. Shandryuk, A. S. Peregudov, E. Sh. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 59, 412 (2017).

    Article  CAS  Google Scholar 

  30. M. L. Gringolts, Y. I. Denisova, E. S. Finkelshtein, and Y. V. Kudryavtsev, Beilstein J. Org. Chem. 15, 218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. Caire da Silva, G. Rojas, M. D. Schulz, and K. B. Wagener, Prog. Polym. Sci. 69, 79 (2017).

    Article  CAS  Google Scholar 

  32. A. Bertrand and M. A. Hillmyer, J. Am. Chem. Soc. 135, 10918 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. S. Monfette and D. E. Fogg, Chem. Rev. 109, 3783 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Yu. I. Denisova, A. V. Roenko, M. L. Gringolts, L. B. Krentsel, A. S. Peregudov, G. A. Shandryuk, E. S. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. B 60, 735 (2018).

    Article  CAS  Google Scholar 

  35. A. V. Roenko, Yu. I. Denisova, M. L. Gringolts, A. S. Peregudov, G. A. Shandryuk, E. S. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. C 61, 134 (2019).

    Article  CAS  Google Scholar 

  36. A. A. Morontsev, M. L. Gringolts, M. P. Filatova, A. S. Peregudov, T. R. Akmalov, S. M. Masoud, S. N. Osipov, Yu. I. Denisova, and Y. V. Kudryavtsev, Polym. Sci., Ser. C 61, 65 (2019).

    Article  CAS  Google Scholar 

  37. A. A. Morontsev, Yu. I. Denisova, M. L. Gringolts, M. P. Filatova, G. A. Shandryuk, E. S. Finkelshtein, and Ya. V. Kudryavtsev, Polym. Sci., Ser. B 60, 688 (2018).

    Article  CAS  Google Scholar 

  38. K. J. Ivin, G. Lapienis, and J. J. Rooney, Makromol. Chem. 183, 9 (1982).

    Article  CAS  Google Scholar 

  39. F. C. Courchay, J. C. Sworen, and K. B. Wagener, Macromolecules 36, 8231 (2003).

    Article  CAS  Google Scholar 

  40. Yu. I. Denisova, V. A. Zhigarev, M. L. Gringolts, G. A. Shandryuk, A. S. Peregudov, E. S. Finkelshtein, and Y. V. Kudryavtsev, Polym. Sci., Ser. C 61, 120 (2019).

    Article  CAS  Google Scholar 

  41. V. Amir-Ebrahimi, A. G. Carvill, J. G. Hamilton, J. J. Rooney, and C. Tuffy, J. Mol. Catal. A: Chem. 115, 85 (1997).

    Article  CAS  Google Scholar 

  42. K. Ivin, J. O’ Donnell, J. Rooney, and C. Stewart, Makromol. Chem. 180, 1975 (1979).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to R.S. Borisov for GC-MS analyses, G.A. Shandryuk for calorimetric measurements, and S.A. Legkov for taking IR spectra (all from the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences), as well as A.S. Peregudov (Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences) for recording 13C NMR spectra.

The structure of the obtained compounds was studied using the equipment of the Shared Research Center of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, and Center for Molecule Structure Studies of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Funding

Synthesis of initial homopolymers and siloxane-containing copolymers of norbornene was supported by the Russian Foundation for Basic Research (project no. 18-33-00961-mol-a). The rest of the research was carried out within the framework of the State Program for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Morontsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morontsev, A.A., Gringolts, M.L., Filatova, M.P. et al. Synthesis of New of Norbornene–1,5-Bis(hexenyl)hexamethyltrisiloxane Copolymers via Olefin Metathesis Reaction. Polym. Sci. Ser. B 62, 638–648 (2020). https://doi.org/10.1134/S1560090420060093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420060093

Navigation