Skip to main content
Log in

Mechanochemical Modification of Activated Carbon in Air

  • Processing of Raw Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect exerted on the chemical properties and structure of activated carbon by the mechanical treatment as a modification procedure was studied. Mechanochemical modification of carbon samples was performed in a roller–ring vibration mill for 5 to 30 min. Samples were studied by X-ray diffraction, IR spectroscopy, and low-temperature nitrogen adsorption. X-ray diffraction analysis shows that the supply of mechanical energy increases the extent of structural disordering of activated carbon, which is manifested in an increase in microstrains. The mechanical treatment for more than 5 min led to a decrease in the specific surface area of the samples with a simultaneous increase in the total pore volume. The mechanical treatment for 5 min and less led to an increase in the specific surface area and to a decrease in the pore volume. The results of potentiometric titration and Boehm titration show that the modification leads to an increase in the concentration of phenolic and carboxyl groups. It is concluded that mechanochemical modification of activated carbon in air leads to its intense oxidation resulting in formation of oxygen-containing groups and in their decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Olontsev, V.F., Khim. Prom–st., 2000, no. 8, pp. 7–12.

  2. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Principles of Adsorption Technique), Moscow: Khimiya, 1984.

    Google Scholar 

  3. Matović, L.L., Vukelić, N.S., Jovanović, U.D., Kumrić, K.R., Krstić, J.B., Babić, B.M., and Đukić, A.B., Arab. J. Chem., 2016, vol. 12, no. 8, pp. 4446–4457. https://doi.org/10.1016/j.arabjc.2016.07.004

    Article  CAS  Google Scholar 

  4. Jaramillo, J., Álvarez, P.M., and Gómez-Serrano, V., Fuel Process. Technol., 2010, vol. 91, no. 11, pp. 1768–1775. https://doi.org/10.1016/j.fuproc.2010.07.018

    Article  CAS  Google Scholar 

  5. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Amsterdam: Elsevier, 2006, pp. 322–359.

    Article  Google Scholar 

  6. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for Activation of Chemical Processes), Novosibirsk: Nauka, 1986, pp. 206–250.

    Google Scholar 

  7. Khodakov, G.S., Fizika izmel’cheniya (Physics of Disintegration), Moscow: Nauka, 1972, pp. 8–23.

    Google Scholar 

  8. Butyagin, P.Yu. and Streletskii, A.N., Phys. Solid State, 2005, vol. 47, no. 5, pp. 856–862.

    Article  CAS  Google Scholar 

  9. Kumrić, K.R., Đukić, A.B., Trtić-Petrović, T.M., Vukelić, N.S., Stojanović, Z., Grbović Novaković, J.D., and Matović, L.L., Ind. Eng. Chem. Res., 2013, vol 52, pp. 7930–7939. https://doi.org/10.1021/ie400257k

    Article  CAS  Google Scholar 

  10. Nenadović, S., Nenadović, M., Kovačević, R., and Matović, L.L., Sci. Sinter., 2009, vol. 41, no. 3, pp. 309–317. https://doi.org/10.2298/SOS0903309N

    Article  CAS  Google Scholar 

  11. San Cristóbal, A.G., Castelló, R., Martín Luengo, M.A., and Vizcayno, C., Appl. Clay Sci., 2010, vol. 49, no. 3, pp. 239–246. https://doi.org/10.1016/j.clay.2010.05.012

    Article  CAS  Google Scholar 

  12. Shrotri, A., Kobayashi, H., and Fukuoka, A., ChemCatChem, 2016, vol. 8, no. 6, pp. 1059–1064. https://doi.org/10.1002/cctc.201501422

    Article  CAS  Google Scholar 

  13. Boehm, H.P., Carbon, 1994, vol. 32, no. 5, pp. 759–769. https://doi.org/10.1016/0008-6223(94)90031-0

    Article  CAS  Google Scholar 

  14. Pukhov, I.G., Smirnova, D.N., Il’in, A.P., and Smirnov, N.N., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, no. 12, pp. 117–122.

    Google Scholar 

  15. Ge, X., Tian, F., Wu, Z., Yan, Y., Cravotto, G., and Wu, Z., Chem. Eng. Process., 2015, vol. 91, pp. 67–77. https://doi.org/10.1016/j.cep.2015.03.019

    Article  CAS  Google Scholar 

  16. Tzeng, S.S., Hung, K.H., and Ko, T.H., Carbon, 2006, vol. 44, no. 5, pp. 859–865. https://doi.org/10.1016/j.carbon.2005.10.033

    Article  CAS  Google Scholar 

  17. Struyf, J., World J. Chem. Educ., 2015, vol. 3, no. 3, pp. 51–58. https://doi.org/10.12691/wjce-3-2-5

    Article  CAS  Google Scholar 

  18. Salame, I.I. and Bandosz, T.J., J. Colloid Interface Sci., 2001, vol. 240, no. 1, pp. 252–258. https://doi.org/10.1006/jcis.2001.7596

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (Project no. FZZW-2020-0010).

Funding

The study was performed within the framework of government assignment for research (theme no. FZZW-2020-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Grishin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, I.S., Smirnov, N.N. & Smirnova, D.N. Mechanochemical Modification of Activated Carbon in Air. Russ J Appl Chem 93, 1661–1666 (2020). https://doi.org/10.1134/S1070427220110051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220110051

Keywords:

Navigation