Skip to main content
Log in

Mathematical Modeling of the Operational Activity of Adsorbents

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The features of cyclic adsorption processes are considered and the fact of necessity to predict a decrease in the dynamic activity of adsorbents during their operation is exhibited. By analogy with recycling chemical processes, phenomenological concepts of the general pattern of sorbent deactivation were developed, which made it possible to form mathematical models of trivial and prolonged deactivation in cyclic and continuous adsorption processes. Simple approximate equations are derived that sllow predicting the change in the dynamic activity of the adsorbent under conditions of long-term operation on the basis of short-term laboratory studies. Examples of the results of predicting the operation of various adsorbents during the purification of gas and liquid phase streams are presented. The developed mathematical models provide acceptable convergence of the calculation results with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Basics of Adsorption Technology), Moscow: Khimiya, 1984.

    Google Scholar 

  2. Lukin, V.D., Antsypovich, I.S., Regeneratsiya adsorbentov (Regeneration of Adsorbents), Leningrad: Khimiya, 1983.

    Google Scholar 

  3. Nikolaev, V.V., Busygina, N.V., Busygin, I.G., Osnovnye protsessy fizicheskoi i fiziko-khimicheskoi pererabotki gaza (The Main Processes of Physical and Physicochemical Gas Processing), Moscow: Nedra, 1998.

    Google Scholar 

  4. Ivanova, E.N., Alekhina, M.B., Aknazarova, S.L., Konkova, T.V., Theor. Found. Chem. Eng., 2015, vol. 49, no. 3, pp. 271–276. https://doi.org/10.1134/S0040579515030045 

    Article  Google Scholar 

  5. Vasil'ev, A.S., Ishin, A.A., Skvortsov, S.A., Sistemy Upravl. Inform. Tekhnol., 2016, no. 4 (66), pp. 47–52.

    Google Scholar 

  6. Silva, J.D., Oliveira, C.C., Chem. Eng. Trans., 2013, vol. 35, pp. 829–835. https://doi.org/10.3303/CET1335138

    Article  Google Scholar 

  7. Nikiforov, I.A., Krivolapov, A.A., Izv. Sarat. un-ta. Nov. ser. Khimiya. Biologiya. Ekologiya., 2017, vol. 17, no. 2, pp. 166–169.

    Google Scholar 

  8. Okunev, B.N., Gromov, A.P., Heifets, L.I., Aristov, Yu.I., Int. J. Heat Mass Transfer., 2008, vol. 51, no. 25–26, pp. 5872–5876. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.037

    Article  CAS  Google Scholar 

  9. Xu, Zhe, Cai, Jian-guo, and Pan, Bing-cai, J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.), 2013, vol. 14 (3), pp. 155–176. https://doi.org/10.1631/jzus.A1300029

    Article  CAS  Google Scholar 

  10. Samoilov, N.A. and Zaichenko, N.V., Russ. J. Appl. Chem., 2006, vol. 79, no. 7, pp. 1127–1133. https://doi.org/10.1134/S1070427206070160 

    Article  CAS  Google Scholar 

  11. Lukin, V.D. and Novosel'skii, A.V., Tsiklicheskie adsorbtsionnye protsessy. Teoriya i raschet (Cyclic adsorption processes. Theory and calculation), Leningrad: Khimiya, 1989.

    Google Scholar 

  12. Matveikin, V.G., Pogodin, V.A., Putin, S.B., and Skvortsov, S.A., Matematicheskoe modelirovanie i upravlenie protsessom korotkotsiklovoi adsorbtsii (Mathematical Modeling and Control of the Pressure Swing Adsorption Process), Moscow: Mashinostroenie-1, 2007.

    Google Scholar 

  13. Akulinin, E.I., Ishin, A.A., Skvortsov, S.A., Dvoretsky, D.S., and Dvoretsky, S.I., Advanced Mater. Technol., 2017, no. 2, pp. 38–49. https://doi.org/10.17277/amt2017.02.pp.038-049 

    Article  Google Scholar 

  14. RU Patent 2159663 (Publ. 2000).

  15. Artemova, I.I., Kondaurov, S.Yu., Bachalov, I.S., Pavlenko, P.P., and Zolotovskii, B.P., Gaz. Prom-st’, 2010, no. 12, pp. 70–73.

    Google Scholar 

  16. Guisnet, M. and Magnoux, P., Zeolite Micropor. Solids: Synthesis, Structure, and Reactivity. NATO ASI Ser. (Ser. C: Mathematical and Physical Sciences), 1992, vol. 352, pp. 457–474. https://doi.org/10.1007/978-94-011-2604-5_20

    Article  CAS  Google Scholar 

  17. Bukhtiyarova, M.V. and Echevskii, G.V., Petrol. Chem., 2020, vol. 60, no. 4, pp. 532–539. https://doi.org/10.1134/S0965544120040039 

    Article  CAS  Google Scholar 

  18. Kondaurov, S.Yu., Artemova, I.I., Nikisheva, M.I., Kruchinin, M.M., Shaikhutdinov, A.Z., and Zolotovskii, B.P., Gaz. Prom-st’, 2011, no. 12, pp. 26–29.

    Google Scholar 

  19. Aliev, A.M., Osmanova, I.I., Safarov, A.R., and Guseinova, A.M., Azerbaidzhan. Khim. Zhurn., 2016, no. 1, pp. 6–34.

    Google Scholar 

  20. Frohlich, D., Henniger, S.K., and Janiak, C., Dalton Trans., 2014, vol. 43, pp. 1530–1534. https://doi.org/10.1039/c4dt02264e

    Article  Google Scholar 

  21. Adzhiev, A.Yu., Moreva, N.P., and Dolinskaya, N.I., Nauch. Zhurn. Ros. Gaz. Ob-va, 2017, no. 2, pp. 43–48.

    Google Scholar 

  22. Liu, C., Li, G., Hensen, E.J.M., and Pidko, E.A., J. Catal., 2016, vol. 344, pp. 570–577. https://doi.org/10.1016/j.jcat.2016.10.027

    Article  CAS  Google Scholar 

  23. Alekhina, M.B., Kon’kova, T.V., Vestn. VGU. Ser. Khimiya. Biologiya. Farmatsiya, 2011, no. 2, pp. 67–74.

    Google Scholar 

  24. Iskalieva, S.K. and Pivovarova, N.A., Tekhnologii nefti i gaza, 2010, no. 3 (68), pp. 13–18.

    Google Scholar 

  25. Echevskii, G.V., Kodenev, E.G., and Nosyreva, G.N., Catal. Ind., 2013, no. 5, pp. 275–282. https://doi.org/10.1134/S2070050413040041 

    Article  Google Scholar 

  26. Shermatov, B.E., Mansurova, M.S., Yalgashev, E.Ya., Kurbanov, E.N., and Ismatov, D.N., Innovatsii v nauke: nauch. zhurn. Novosibirsk, 2017, no. 15 (76), pp. 43–45.

    Google Scholar 

  27. Samoilov, N.A., Fenomenologiya adsorbtsii. Prakticheskie i teoreticheskie aspekty adsorbtsionnoi ochistki i osushki tekhnologicheskikh potokov (Phenomenology of Adsorption. Practical and Theoretical Aspects of Adsorption Cleaning and Drying of Process Streams), Ufa: GUP Institut neftekhimpererabotki RB, 2014.

    Google Scholar 

  28. Kubasov, A.A., Kitaev, L.E., Yushchenko, V.V., and Tikhii, Ya.V., Vestn. MGU. Ser. 2. Khimiya, 2005, vol. 46, no. 4, pp. 236–242.

  29. Nagiev, M.S., Osnovy razrabotki kompleksnykh khimicheskikh protsessov i proektirovaniya reaktorov (Fundamentals of Integrated Chemical Process Development and Reactor Design), Baku: Azerbgosizdat, 1961.

    Google Scholar 

  30. Dyment, L.O., Vinogradova, V.S., and Kofman, L.C., Tseolity, ikh sintez, svoistva i primenenie (Zeolites, Their Synthesis, Properties and Applications), Moscow: Nauka, 1965.

    Google Scholar 

  31. Silbernagel, D.R., Chem. Eng. Progress, 1967, vol. 63, no. 4, pp. 99–102.

    CAS  Google Scholar 

  32. Prokof’ev, Ya.N., Orlova, A.P., and Barashkova, K.D., Adsorbenty, ikh poluchenie, svoistva i primenenie (Adsorbents, Their Preparation, Properties and Application), Leningrad: Nauka, 1971.

    Google Scholar 

  33. Serpionova, E.N., Promyshlennaya adsorbtsiya gazov i parov (Industrial Adsorption of Gases and Vapors), Moscow: Vysshaya. Shkola, 1969.

    Google Scholar 

  34. Hersh, C.K., Molecular Sieves, London; New York, 1961.

    Google Scholar 

  35. Samoilov, N.A., Khim. Prom-st’, 1982, no. 6, pp. 42–44.

    Google Scholar 

  36. Gainko, N.K. and Dorogochinskii, A.Z., Chem. Technol. Fuels Oils, 1965, vol. 1, no. 11, pp. 856–860. https://doi.org/10.1007/BF00719191 

    Article  Google Scholar 

  37. Fominykh, L.F., Asylova, K.G., and Samoilov, N.A., Chem. Technol. Fuels Oils, 1974, vol. 10, no. 8, pp. 597–600. https://doi.org/10.1007/BF00726368 

    Article  Google Scholar 

  38. Sukhanova, T.A., Subbotin, A.I., and Koval’skaya, A.P., Prom. San. Ochistka Gazov, 1980, no. 2, pp. 19–20.

    Google Scholar 

  39. Surovikin, Y.V., Likholobov, V.A., Sergeev, V.V., and Makarov, I.V., Solid Fuel Chem., 2014, vol. 48, no. 6, pp. 371–381. https://doi.org/10.3103/S0361521914060081 

    Article  CAS  Google Scholar 

  40. Gounder, R. and Iglesia, E., J. Am. Chem. Soc., 2009, vol. 131, pp. 1958–1971. https://doi.org/10.1021/ja808292c

    Article  CAS  PubMed  Google Scholar 

  41. Samoilov, N.A., React. Kinet. Catal. Lett., 1986, no. 2, pp. 519–523. https://doi.org/10.1007/BF02068361

    Article  Google Scholar 

  42. Gainko, N.K. and Dorogochinskii, A.Z., Chem. Tech. Fuels Oil., 1970, vol. 6, no. 9, pp. 651–654. https://doi.org/10.1007/BF00716537 

    Article  Google Scholar 

  43. Romankov, P.G. and Lepilin, V.N., Nepreryvnaya adsorbtsiya parov i gazov (Continuous Adsorption of Vapors and Gases), Leningrad: Khimiya, 1969.

    Google Scholar 

  44. Borisova, L.V., Mirskii, Y.V., Dorogochinskii, A.Z., and Meged’, N.F., Chem. Technol. Fuels Oils, 1971, vol. 7, no. 7, pp. 254–257. https://doi.org/10.1007/BF00718248 

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Samoilov.

Ethics declarations

The author declares that he has no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, N.A. Mathematical Modeling of the Operational Activity of Adsorbents. Russ J Appl Chem 93, 1715–1728 (2020). https://doi.org/10.1134/S1070427220110130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220110130

Keywords:

Navigation