Skip to main content

Advertisement

Log in

Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery

  • Invited review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Molten salt is an excellent medium for chemical reaction, energy transfer, and storage. Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary natural sources. Among these technologies, molten salt electrolysis is an economic and environment-friendly method to extract metals from waste materials. From the perspective of molten salt characteristics, the application of molten salts in chemistry, electrochemistry, energy, and thermal storage should be comprehensively elaborated. This review discusses further directions for the research and development of molten salt electrolysis and their use for metal recovery from various metal wastes, such as magnet scrap, nuclear waste, and cemented carbide scrap. Attention is placed on the development of various electrolysis methods for different metal containing wastes, overcoming some problems in electrolytes, electrodes, and electrolytic cells. Special focus is given to future development directions for current associated processing obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Sadoway, New opportunities for metals extraction and waste treatment by electrochemical processing in molten salts, J. Mater. Res., 10(1995), No. 3, p. 487.

    CAS  Google Scholar 

  2. S.Q. Jiao, H.D. Jiao, W.L. Song, M.Y. Wang, and J.G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588.

    CAS  Google Scholar 

  3. S.Y. Liu, Y.L. Zhen, X.B. He, L.J. Wang, and K.C. Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1678.

    Google Scholar 

  4. L. Kartal, M.B. Daryal, G.K. Şireli, and S. Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258.

    CAS  Google Scholar 

  5. Y.K. Wu, S. Chen, and L.J. Wang, Electrochemistry of Hf (IV) in NaCl-KCl-NaF-K2HfF6 molten salts, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1644.

    CAS  Google Scholar 

  6. V.M.B. Nunes, C.S. Queirós, M.J.V. Lourenço, F.J.V. Santos, and C.A. Nieto, Molten salts as engineering fluids-A review: Part I. Molten alkali nitrates, Appl. Energ., 183(2016), p. 603.

    CAS  Google Scholar 

  7. R. Serrano-López, J. Fradera, and S. Cuesta-López, Molten salts database for energy applications, Chem. Eng. Process., 73(2013), p. 87.

    Google Scholar 

  8. B. Muñoz-Sánchez, J. Nieto-Maestre, I. Iparraguirre-Torres, A. García-Romero, and J.M. Sala-Lizarraga, Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature, Renewable Sustainable Energy Rev., 82(2018), p. 3924.

    Google Scholar 

  9. P. Liu, Y.X. Tong, and Q.Q. Yang, Molten salt systems and the new developments for the application of molten salts, Electrochemistry, 134(2007), No. 4, p. 351.

    Google Scholar 

  10. M. Patrick and A.G. Ronald, Thermal activated (thermal) battery technology: Part II. Molten salt electrolytes, J. Power Sources, 164(2007), No. 1, p. 397.

    Google Scholar 

  11. M. Liu, N.H. Steven, B. Stuart, M. Belusko, R. Jacob, G. Will, W. Saman, and F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renewable Sustainable Energy Rev., 53(2016), p. 1411.

    CAS  Google Scholar 

  12. K. Habib, S.T. Hansdóttir, and H. Habib, Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050, Resour. Conserv. Recycl., 154(2020), art. No. 104603.

  13. S.E. Zhang, Y.J. Ding, B. Liu, and C.C. Chang, Supply and demand of some critical metals and present status of their recycling in WEEE, Waste Manage., 65(2017), p. 113.

    CAS  Google Scholar 

  14. S. Langkau, E. Tercero, and A. Luis, Technological change and metal demand over time: What can we learn from the past, Sustainable Mater. Technol., 16(2018), p. 54.

    Google Scholar 

  15. Z.S. Yu, H.W. Han, P.Y. Feng, S. Zhao, T.Y. Zhou, A. Kakade, S. Kulshrestha, S. Majeed, and X.K. Li, Recent advances in the recovery of metals from waste through biological processes, Bioresour. Technol., 297(2020), art. No. 122416.

  16. T. Hennebel, N. Boon, S. Maes, and M. Lenz, Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives, New Biotechnol., 32(2015), No. 1, p. 121.

    CAS  Google Scholar 

  17. S.W. Won, P. Kotte, W. Wei, A. Lim, and Y.S. Yun, Biosorbents for recovery of precious metals, Bioresour. Technol., 160(2014), p. 203.

    CAS  Google Scholar 

  18. J.P.H. Perez, K. Folens, K. Leus, F. Vanhaecke, P. Van Der Voort, and L. Du, Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams, Resour. Conserv. Recycl., 142(2019), p. 177.

    Google Scholar 

  19. D.P. Song and J.Q. Xu, Recycling technologies and present legislations of management for waste electrical and electronic equipment, J. Shanghai Sec. Polytech. Univ., 25(2008), No. 2, p. 129.

    CAS  Google Scholar 

  20. W.J. Hall and P.T. Williams, Separation and recovery of materials from scarp printed circuit boards, Resour. Conserv. Recycl., 51(2007), No. 3, p. 691.

    Google Scholar 

  21. Y.J. Ding, S.E. Zhang, B. Liu, H.D. Zheng, C.C. Chang, and C. Ekbergc, Recovery of precious metals from electronic waste and spent catalysts: A review, Resour. Conserv. Recycl., 141(2019), p. 284.

    Google Scholar 

  22. L. Kartal and S. Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 992.

    CAS  Google Scholar 

  23. J. Mohanty and P.K. Behera, Use of pre-treated TiO2 as cathode material to produce Ti metal through molten salt electrolysis, Trans. Indian Inst. Met., 72(2019), No. 4, p. 859.

    CAS  Google Scholar 

  24. S. Masoudifar, M. Bavand-Vandchali, F. Golestani-Fard, and A. Nemati, Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables, Ceram. Int., 42(2016), No. 10, p. 11951.

    CAS  Google Scholar 

  25. J. Zhang, W. Li, Q.L. Jia, L.X. Lin, J.T. Huang, and A.W. Zhang, Molten salt assisted synthesis of 3C-SiC nanowire and its photoluminescence properties, Ceram. Int., 41(2015), No. 10, p. 12614.

    CAS  Google Scholar 

  26. Z. Huang, F.L. Li, C.P. Jiao, J.H. Liu, J.T. Huang, L.L. Lu, H.J. Zhang, and S.W. Zhang, Molten salt synthesis of La2Zr2O7 ultrafine powders, Ceram. Int., 42(2016), No. 5, p. 6221.

    CAS  Google Scholar 

  27. R.H. Arendt, Liquid-phase sintering of magnetically isotropic and anise by the reaction of BaFe2O4 with Fe2O3, J. Appl. Phys., 44(1973), No. 7, p. 3300.

    CAS  Google Scholar 

  28. Y.M. Li, D. Huang, R.H. Liao, and J.S. Wang, Development of crystal synthesis by molten salt method, J. Ceram., 2(2008), p. 87.

    Google Scholar 

  29. Q.Q. Yang, Application of molten salt technology, Univ. Chem., 3(1994), p. 1.

    Google Scholar 

  30. A. Potysz, E.D. van Hullebusch, and J. Kierczak, Perspectives regarding the use of metallurgical slags as secondary metal resources — A review of bioleaching approaches, J. Environ. Manage., 219(2018), p. 138.

    CAS  Google Scholar 

  31. K. Pollmann, S. Kutschke, S. Matys, J. Raff, G. Hlawacek, and F.L. Lederer, Bio-recycling of metals: Recycling of technical products using biological applications, Biotechnol. Adv., 36(2018), No. 4, p. 1048.

    CAS  Google Scholar 

  32. X.Y. Yan and D.J. Fray, Molten salt electrolysis for sustainable metals extraction and materials processing: A review, [in] Shing Kuai and Ji Meng, eds., Electrolysis: Theory, Types and Applications, Nova Science, 2010, p. 255.

  33. T. Guo, S.D. Wang, X.S. Ye, Q. Li, H.N. Liu, M. Guo, and Z.J. Wu, Research progress in the preparation of rare earth alloys by molten salt electrolysis method, Sci. Sin. Chim., 42(2012), No. 9, p. 1328.

    CAS  Google Scholar 

  34. J.M. Liu, X.G. Lu, Q. Li, C.T. Chen, H.W. Chen, X.Y. Lü, and G.Z. Zhou, Prospect and retrospect of fused salt electrolysis process for producing refractory metals, Rare Met. Lett., 9(2006), p. 5.

    Google Scholar 

  35. G.Q. Zong and J.C. Xiao, Advances in the preparation and application of fluoride molten salts, Chem. Ind. Eng. Prog., 37(2018), No. 7, p. 6.

    Google Scholar 

  36. R. Liu, S.X. Hui, W.J. Ye, Y. Yu, Y.Y. Fu, and X.J. Song, X.G. Deng, Tensile and fracture properties of Ti-62A alloy plate with different microstructures, Rare Met., 31(2012), No. 5, p. 420.

    CAS  Google Scholar 

  37. Z. Wang, J. Li, Y.X. Hua, Z. Zhang, Y. Zhang, and P.C. Ke, Research progress in production technology of titanium, Chin. J. Rare Met., 38(2014), No. 5, p. 915.

    CAS  Google Scholar 

  38. M.V. Ginatta, Why produce titanium by EW, JOM., 52(2000), No. 5, p. 18.

    CAS  Google Scholar 

  39. M.V. Ginatta, Process for the Electrolytic Production of Metals, US Patent, Appl. US6074545(A), 2000.

  40. M.V. Ginatta, G. Orsello, and R. Berruti, Method and Cell for the Electrolytic Production of a Polyvalent Metal, US Patent, Appl. US5015342(A), 1991.

  41. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.

    CAS  Google Scholar 

  42. M.F. Liu, S.G Lu, and S.R. Kan, Recent development of electrochemical reduction of oxides to refractory metals and alloys in molten salt, Chin. J. Rare Met., 32(2008), No. 5, p. 130.

    Google Scholar 

  43. B.J. Zhao, G.H. Cui, and L. Wang, Development of the production of metal and alloy by direct electrochemical removal of oxygen, J. Hebei Polytech. Univ., 30(2008), No. 1, p. 128.

    Google Scholar 

  44. Z.L. Yu, N. Wang, S. Fang, X.P. Qi, Z.F. Gao, J.Y. Yang, and S.G. Lu, Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silica, Ind. Eng. Chem. Res., 59(2020), No. 1, p. 1.

    CAS  Google Scholar 

  45. E. Juzeliūnas and D.J. Fray, Silicon electrochemistry in molten salts, Chem. Rev., 120(2020), No. 3, p. 1690.

    Google Scholar 

  46. B.P. Uday, D.E. Woolley, and G.B. Kenney, Emerging SOM technology for the green synthesis of metals from oxides, JOM, 53(2001), No. 10, p. 32.

    Google Scholar 

  47. X.G. Lu, X.L. Zou, C.H. Li, Q.D. Zhong, W.Z. Ding, and Z.F. Zhou, Green electrochemical process solid-oxide oxygen-ion-conducting membrane (SOM): Direct extraction of Ti-Fe alloys from natural ilmenite, Metall. Mater. Trans. B, 43(2012), No. 3, p. 503.

    CAS  Google Scholar 

  48. X.S. Ye, X.G. Lu, C.H. Li, W.Z. Ding, X.L. Zou, Y.H. Gao, and Q.D. Zhong, Preparation of Ti-Fe based hydrogen storage alloy by SOM method, Int. J. Hydrogen Energy, 36(2011), No. 7, p. 4573.

    CAS  Google Scholar 

  49. F. Cardarelli, Method for Electrowinning of Titanium Metal or Alloy from Titanium Oxide Containing Compound in the Liquid State, US Patent, Appl. US7504017(B2), 2009.

  50. F. Li, M. Yu, and X.F. Cui, Advances on low cost molten-salt electrolysis technology for Titanium production, Nonferrous Metal., 62(2010), No. 3, p. 96.

    CAS  Google Scholar 

  51. S.Q. Jiao and H.M. Zhu, Novel metallurgical process for titanium production, J. Mater. Res., 21(2006), No. 9, p. 2172.

    CAS  Google Scholar 

  52. S.Q. Jiao and H.M. Zhu, Electrolysis of Ti2CO solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1, p. 243.

    CAS  Google Scholar 

  53. R.A. Guidotti and P. Masset, Thermally activated (“thermal”) battery technology Part I: An overview, J. Power Sources, 161(2006), No. 2, p. 1443.

    CAS  Google Scholar 

  54. M.G. Jeong, J.H. Cho, and B.J. Lee, Heat transfer analysis of a high-power and large-capacity thermal battery and investigation of effective thermal model, J. Power Sources, 424(2019), p. 35.

    CAS  Google Scholar 

  55. R.A. Guidotti, F.W. Reinhardt, and J.G. Odinek, Overview of high-temperature batteries for geothermal and oil/gas borehole power sources, J. Power Sources, 136(2004), No. 2, p. 257.

    CAS  Google Scholar 

  56. M.H. Miles, G.E. McManis, and A.N. Fletcher, Effect of temperature and electrolyte composition on the lithium-boron alloy anode in nitrate melts: Passivating films on solid and liquid lithium, Electrochim. Acta, 30(1985), No. 7, p. 889.

    CAS  Google Scholar 

  57. M.A. Geyer, Thermal storage for solar power plants, Sol. Power Plants, 7(1991), p. 199.

    Google Scholar 

  58. A.G. Fernández, H. Galleguillos, and F.J. Pérez, Corrosion ability of a novel heat transfer fluid for energy storage in CSP plants, Oxid. Met., 82(2014), No. 5, p. 331.

    Google Scholar 

  59. T. Bauer, N. Breidenbach, N. Pfleger, D. Laing, and M. Eck, Overview of molten salt storage systems and material develop- ment for solar thermal power plants, [in] World Renewable Energy Forum, Colorado, 2(2012), p. 837.

    Google Scholar 

  60. Y.T. Wu, N. Ren, and Z.F. Ma, Research and application of molten salts for sensible heat storage, Energy Sci. Technol., 2(2013), No. 6, p. 586.

    Google Scholar 

  61. Z.H. Tian and J. Zhang, Design and research of double-tank molten salt indirect heat storage system for trough solar thermal power generation, Sol. Energy, 22(2012), p. 54.

    Google Scholar 

  62. A.G. Fernandez, S. Ushak, H. Galleguillos, and F.J. Pérez, Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants, Appl. Energy, 119(2014), p. 131.

    CAS  Google Scholar 

  63. D.L. Zhang, L.M. Liu, M.H. Liu, R.S. Xu, C. Gong, J. Zhang, C.L. Wang, S.Z. Qiu, and G.H. Su, Review of conceptual design and fundamental research of molten salt reactors in China, Int. J. Energy Res., 42(2018), No. 5, p. 1834.

    Google Scholar 

  64. A.C.C. Tseung, Past, present and future of fuel cells, Battery Bimonthly, 32(2002), p. 130.

    CAS  Google Scholar 

  65. S. Frangini and A. Masi, Molten carbonates for advanced and sustainable energy applications: Part II. Review of recent literature, Int. J. Hydrogen Energy, 41(2016), No. 42, p. 18971.

    CAS  Google Scholar 

  66. Q.Q. Yang and S.Z. Duan, The new developments of molten salt electrochemistry, Electrochemistry, 7(2001), No. 1, p. 14.

    Google Scholar 

  67. T. Oishi, K. Koyama, S. Alam, M. Tanaka and J.C. Lee, Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions, Hydrometallurgy, 89(2007), No. 1, p. 82.

    CAS  Google Scholar 

  68. C.M. Du, C. Shang, X.J. Gong, T. Wang, and X.G. Wei, Plasma methods for metals recovery from metal-containing waste, Waste Manage., 77(2018), p. 373.

    CAS  Google Scholar 

  69. K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y.X. Yang, A. Walton, and M. Buchert, Recycling of rare earths: a critical review, J. Clean. Prod., 51(2013), p. 1.

    CAS  Google Scholar 

  70. L.J. Chen, Z.L. Li, A. Gong, L. Tian, and Z.F. Xu, Research progress of rare earth recovery from rare earth waste, J. Chin. Soc. Rare Earths, 37(2019), No. 3, p. 259.

    Google Scholar 

  71. A. Abbasalizadeh, L. Teng, S. Seetharaman, J. Sietsma and Y. Yang, Rare earth extraction from NdFeB magnets and rare earth oxides using aluminum chloride/fluoride molten salts, [in] Ismar Borges De Lima and Walter Leal Filho, eds., Rare Earths Industry, Elsevier Inc, Netherlands, 2016, p. 357.

    Google Scholar 

  72. Z.S. Hua, J. Wang, L. Wang, Z. Zhao, X.L. Li, Y.P. Xiao, and Y.X. Yang, Selective extraction of rare earth elements from NdFeB scrap by molten chlorides, ACS Sustainable Chem. Eng., 2(2014), No. 11, p. 2536.

    CAS  Google Scholar 

  73. A. Abbasalizadeh, A. Malfliet, S. Seetharaman, J. Sietsma, and Y.X. Yang, Electrochemical recovery of rare earth elements from magnets: conversion of rare earth based metals into rare earth fluorides in molten salts, Mater. Trans., 58(2017), No. 3, p. 400.

    CAS  Google Scholar 

  74. A. Abbasalizadeh, A. Malfliet, S. Seetharaman, J. Sietsma, and Y.X. Yang, Electrochemical extraction of rare earth metals in molten fluorides: conversion of rare earth oxides into rare earth fluorides using fluoride additives, J. Sustainable Metall., 3(2017), No. 3, p. 627.

    Google Scholar 

  75. M. Tanaka, T. Oki, K. Koyama, H. Narita, and T. Oishi, Recycling of rare Earths from Scrap, [in] Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 2015.

    Google Scholar 

  76. A.M. Martinez, O. Kjos, E. Skybakmoen, A. Solheim, and G.M. Haarberg, Extraction of rare earth metals from Nd-based scrap by electrolysis from molten salts, ECS Trans., 50(2012), No. 11, p. 453.

    Google Scholar 

  77. K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochemical formation of Dy-Ni alloys in molten NaCl-KCl-DyCl3, Electrochim. Acta, 106(2013), p. 293.

    CAS  Google Scholar 

  78. K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochemical formation of Nd-Ni alloys in molten NaCl-KCl-NdCl3, Electrochim. Acta, 92(2013), p. 349.

    CAS  Google Scholar 

  79. H. Konishi, H. Ono, T. Oishi, and T. Nohira, Separation of Dy from model magnet scraps using molten salt electrochemical process, J. Jpn. Soc. Exp. Mech., 12(2012), p. s243.

    Google Scholar 

  80. H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and T. Oishi, Separation of Dy from Nd-Fe-B magnet scraps using molten salt electrolysis, ECS Trans., 64(2014), No. 4, p. 593.

    CAS  Google Scholar 

  81. Y. Kamimoto, T. Itoh, K. Kuroda, and R. Ichino, Recovery of rare-earth elements from neodymium magnets using molten salt electrolysis, J. Mater. Cycles Waste Manage., 19(2017), No. 3, p. 1017.

    CAS  Google Scholar 

  82. Y. Kamimoto, G. Yoshimura, T. Itoh, K. Kuroda, and R. Ichino, Leaching of rare earth elements from neodymium magnet using electrochemical method, Trans. Mater. Res. Soc. Jpn., 40(2015), No. 4, p. 343.

    CAS  Google Scholar 

  83. Y.S. Yang, C.Q. Lan, L.Y. Guo, Z.Q. An, Z.W. Zhao, and B.W. Li, Recovery of rare-earth element from rare-earth permanent magnet waste by electro-refining in molten fluorides, Sep. Purif. Technol., 233(2020), art. No. 116030.

  84. D. Vaden, S.X. Li, B.R. Westphal, K.B. Davies, T.A. Johnson, and D.M. Pace, Engineering-scale liquid cadmium cathode experiments, Nucl. Technol., 162(2008), No. 2, p. 124.

    CAS  Google Scholar 

  85. E.Y. Choi and S.M. Jeong, Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyro-processing technology, Prog. Nat. Sci. Mater., 25(2015), No. 6, p. 572.

    CAS  Google Scholar 

  86. H. Tang, Y.M. Ren, L. Shao, Y. Zhong, and R. Gao, Development of pyroprocessing of spent nuclear fuel by molten salts electrolysis, J. Nucl. Radiochem., 39(2017), No. 6, p. 385.

    Google Scholar 

  87. J.M. Hur, C.S. Seo, S.S. Hong, D.S. Kang, and S.W. Park, Metallization of U3O8 via catalytic electrochemical reduction with Li2O in LiCl molten salt, React. Kinet. Catal. Lett., 80(2003), No. 2, p. 217.

    CAS  Google Scholar 

  88. S.B. Park, B.H. Park, S.M. Jeong, J.M. Hur, C.S. Seo, S.H. Choi, and S.W. Park, Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt, J. Radioanal. Nucl. Chem., 268(2006), No. 3, p. 489.

    CAS  Google Scholar 

  89. S.M. Jeong, S.B. Park, S.S. Hong, C.S. Seo, and S.W. Park, Electrolytic production of metallic uranium from U3O8 in a 20-kg batchscale reactor, J. Radioanal. Nucl. Chem., 268(2006), No. 2, p. 349.

    CAS  Google Scholar 

  90. Y. Sakamura and T. Omori, Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels, Nucl. Technol., 171(2010), No. 3, p. 266.

    CAS  Google Scholar 

  91. E.Y. Choi, J.W. Lee, J.J. Park, J.M. Hur, J.K. Kim, K.Y. Jung, and S.M. Jeong, Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt, Chem. Eng. J., 207-208(2012), p. 514.

    CAS  Google Scholar 

  92. E.Y. Choi, J.M. Hur, I.K. Choi, S.G. Kwon, D.S. Kang, S.S. Hong, H.S. Shin, M.A. Yoo, and S.M. Jeong, Electrochemical reduction of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio, J. Nucl. Mater., 418(2011), No. 1–3, p. 87.

    CAS  Google Scholar 

  93. Y. Shin, I. Kim, S. Oh, C. Park, and C. Lee, Lithium recovery from radioactive molten salt wastes by electrolysis, J. Radioanal. Nucl. Chem., 243(2000), No. 3, p. 639.

    CAS  Google Scholar 

  94. J.S. Zhang, Electrochemistry of actinides and fission products in molten salts-Data review, J. Nucl. Mater., 447(2014), No. 1–3, p. 271.

    CAS  Google Scholar 

  95. K. Kinoshita, T. Inoue, S.P. Fusselman, D.L. Grimmett, C.L. Krueger, and T.S. Storvick, Electrodeposition of uranium and transuranic elements onto solid cathode in LiCl-KCl/Cd system for pyrometallurgical partitioning, J. Nucl. Sci. Technol., 40(2003), No. 7, p. 524.

    CAS  Google Scholar 

  96. S.W. Kwon, D.H. Ahn, E.H. Kim, and H.G. Ahn, A study on the recovery of actinide elements from molten LiCl-KCl eutectic salt by an electrochemical separation, J. Ind. Eng. Chem., 15(2009), No. 1, p. 86.

    CAS  Google Scholar 

  97. J. Park, S. Choi, S. Sohn, K.R. Kim, and I.S. Hwanga, Cyclic voltammetry on zirconium redox reactions in LiCl-KCl-ZrCl4 at 500°C for electrorefining contaminated zircaloy-4 cladding, J. Electrochem Soc., 161(2014), No. 3, p. H97.

    CAS  Google Scholar 

  98. C.H. Lee, K.H. Kang, M.K. Jeon, C.M. Heo, and Y.L. Lee, Electroreflning of zirconium from zircaloy-4 cladding hulls in LiCl-KCl molten salts, J. Electrochem. Soc., 159(2012), No. 8, p. D463.

    CAS  Google Scholar 

  99. Y.L. Lee, C.H. Lee, M.K. Jeon, and K.H. Kang, Studies on the electrochemical dissolution for the treatment of 10 g-scale zircaloy-4 cladding hull wastes in LiCl-KCl molten salts, J. Korean Radioact. Waste Soc., 10(2012), No. 4, p. 273.

    Google Scholar 

  100. C.H. Lee, M.K. Jeon, C.M. Heo, Y.L. Lee, K.H. Kang, and G.I. Park, Effect of Zr oxide on the electrochemical dissolution of zircaloy-4 cladding tubes, J. Electrochem. Soc., 159(2012), No. 11, p. E171.

    CAS  Google Scholar 

  101. C.H. Lee, Y.L. Lee, M.K. Jeon, Y.T. Choi, K.H. Kang, and G.I. Park, Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes, J. Nucl. Mater., 449(2014), No. 1–3, p. 93.

    Google Scholar 

  102. R. Fujita, H. Nakamura, K. Mizuguchi, M. Sato, T. Shibano, Y. Ito, T. Goto, T. Terai, and S. Ogawa, Zirconium recovery process for spent zircaloy components from light water reactor (LWR) by electrorefining in molten salts, Electrochemistry, 73(2005), No. 8, p. 751.

    CAS  Google Scholar 

  103. T. Goto, T. Nohira, R. Hagiwara, and Y. Ito, Selected topics of molten fluorides in the field of nuclear engineering, J. Fluorine Chem, 130(2009), No. 1, p. 102.

    CAS  Google Scholar 

  104. C.H. Lee, D.Y. Kang, M.K. Jeon, K.H. Kang, S.W. Paek, D.H. Ahn, and K.T. Park, Addition effect of fluoride compounds for Zr electrorefining in LiCl-KCl molten salts, Int. J. Electrochem Sci., 11(2016), p. 566.

    Google Scholar 

  105. Y. Akai and R. Fujita, Development of transuranium element recovery from high-level radioactive liquid waste, J. Nucl. Sci. Technol., 33(1996), No. 10, p. 807.

    CAS  Google Scholar 

  106. L. Cassayre, P. Palau, P. Chamelot, and L. Massot, Properties of low-temperature melting electrolytes for the aluminum electrolysis process: A review, J. Chem. Eng. Data, 55(2010), No. 11, p. 4549.

    CAS  Google Scholar 

  107. M. Ueda, S. Tsukamoto, S. Konda, and T. Ohtsuka, Recovery of aluminum from oxide particles in aluminum dross using AlF3-NaF-BaCl2 molten salt, J. Appl. Electrochem., 35(2005), No. 9, p. 925.

    CAS  Google Scholar 

  108. M. Ueda, M. Amemiya, T. Ishikawa, and T. Ohtsuka, Recovery of aluminum alloy from aluminum dross by treatment of chloride-fluoride mixture melt, J. Jpn. Inst. Met., 63(1999), No. 3, p. 279.

    CAS  Google Scholar 

  109. X.Y. Yan, Chemical and electrochemical processing of aluminum dross using molten salts, Metall. Mater. Trans. B, 39(2008), No. 2, p. 348.

    Google Scholar 

  110. L. Xu, Y. Xiao, A. van Sandwijk, Q. Xu, and Y. Yang, Production of nuclear grade zirconium: A review, J. Nucl. Mater., 466(2015), p. 21.

    CAS  Google Scholar 

  111. K.T. Park, T.H. Lee, N.C. Jo, H.H. Nersisyan, B.S. Chun, H.H. Lee, and J.H. Lee, Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF-KF-ZrF4 molten fluorides, J. Nucl. Mater., 436(2013), No. 1–3, p. 130.

    CAS  Google Scholar 

  112. D.J. Park, S.H. Kim, K.T. Park, J.H. Mun, H.H. Lee, and J.H. Lee, Electrorefining behavior of zirconium scrap with multiple cathode in fluoride-based molten salt, J. Nucl. Fuel Cycle Waste Technol., 13(2015), No. 1, p. 11.

    Google Scholar 

  113. X.L. Zou and X.G. Lu, Preparation of titanium alloy by direct reduction of Ti-bearing blast furnace slag, Chin. J. Nonferrous Met., 20(2010), No. 9, p. 1829.

    CAS  Google Scholar 

  114. X.L. Zou, X.G. Lu, W. Xiao, Z.F. Zhou, Q.D. Zhong, and W.Z. Ding, Direct electrochemical extraction of Ti5Si3 from Ti/Si-containing metal oxide compounds in molten CaCl2, J. Shanghai Jiaotong Univ., 18(2013), p. 111.

    Google Scholar 

  115. X.L. Zou, X.G. Lu, Z.F. Zhou, C.H. Li, and W.Z. Ding, Direct selective extraction of titanium silicide Ti5Si3 from multi-component Ti-bearing compounds in molten salt by an electrochemical process, Electrochim. Acta, 56(2011), No. 24, p. 8430.

    CAS  Google Scholar 

  116. S.H. Li, X.L. Zou, K. Zheng, X.G. Lu, C.Y. Chen, X. Li, Q. Xu, and Z.F. Zhou, Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-bearing blast furnace slag in molten CaCl2, Metall. Mater. Trans. B, 49(2018), No. 2, p. 790.

    CAS  Google Scholar 

  117. D. Mishra, S. Sinha, K. Sahu, A. Agrawal, and R. Kumar, Recycling of secondary tungsten resources, Trans. Indian Inst. Met., 70(2017), No. 2, p. 479.

    CAS  Google Scholar 

  118. P.K. Meherotra, Reduction of environmental impact in hard-metal technologies, Met. Powder Rep., 72(2017), No. 4, p. 267.

    Google Scholar 

  119. R. Srivastava, J. Lee, M. Bae, and V. Kumar, Reclamation of tungsten from carbide scraps and spent materials, J. Mater. Sci., 54(2019), No. 1, p. 83.

    CAS  Google Scholar 

  120. A. Shemi, A. Magumise, S. Ndlovu, and N. Sacks, Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects, Miner. Eng., 122(2018), p. 195.

    CAS  Google Scholar 

  121. T. Kojima, T. Shimizu, R. Sasai, and H. Itoh, Recycling process of WC-Co cermets by hydrothermal treatment, J. Mater. Sci., 40(2005), No. 19, p. 5167.

    CAS  Google Scholar 

  122. C. Edtmaier, R. Schiesser, C. Meissl, W.D. Schubert, A. Bock, A. Schoen, and B. Zeiler, Selective removal of the cobalt binder in WC/Co based hardmetal scraps by acetic acid leaching, Hydrometallurgy, 76(2005), No. 1–2, p. 63.

    CAS  Google Scholar 

  123. C.S. Freemantle, N. Sacks, M. Topic, and C.A. Pineda-Vargas, PIXE characterization of byproducts resulting from the zinc recycling of industrial cemented carbides, Nucl. Instrum. Methods Phys. Res., 363(2015), p. 167.

    CAS  Google Scholar 

  124. B.X. Liu, A.H. Shi, Q. Su, G.J. Chen, W. Li, L.N. Zhang, and B. Yang, Recovery of tungsten carbides to prepare the ultrafine WC-Co composite powder by two-step reduction process, Powder Technol., 306(2016), p. 113.

    Google Scholar 

  125. X.L. Xi, G.H. Si, Z.R. Nie, and L.W. Ma, Electrochemical behavior of tungsten ions from WC scrap dissolution in a chloride melt, Electrochim. Acta, 184(2015), p. 233.

    CAS  Google Scholar 

  126. G.H. Si, X.L. Xi, Z.R. Nie, L.W. Zhang, and L.W. Ma, Preparation and characterization of tungsten nanopowders from WC scrap in molten salts, Int. J. Refract. Met. H., 54(2016), p. 422.

    CAS  Google Scholar 

  127. Q.H. Zhang, X.L. Xi, Z.R. Nie, L.W. Zhang, and L.W. Ma, Electrochemical dissolution of cemented carbide scrap and electrochemical preparation of tungsten and cobalt metals, Int. J. Refract. Met. Hard Mater., 79(2019), p. 145.

    CAS  Google Scholar 

  128. X.J. Xiao, X.L. Xi, Z.R. Nie, L.W. Zhang, and L.W. Ma, Direct electrochemical preparation of cobalt, tungsten, and tungsten carbide from cemented carbide scrap, Metall. Mater. Trans. B, 48(2017), No. 1, p. 692.

    CAS  Google Scholar 

  129. L.W. Zhang, Z.R. Nie, X.L. Xi, L.W. Ma, X.J. Xiao, and M. Li, Electrochemical dissolution of tungsten carbide in NaCl-KCl-Na2WO4 molten salt, Metall. Mater. Trans. B, 49(2018), No. 1, p. 334.

    CAS  Google Scholar 

  130. L.W. Zhang, Z.R. Nie, X.L. Xi, and L.W. Ma, Electrochemical separation and extraction of cobalt and tungsten from cemented scrap, Sep. Purif. Technol., 195(2018), p. 244.

    CAS  Google Scholar 

  131. M. Li, X.L. Xi, Z.R. Nie, L.W. Ma, and Q.Q. Liu, Electrochemical extraction of tungsten derived from WC scrap and electrochemical properties of tungsten ion in LiCl-KCl molten salt, J. Electrochem. Soc., 163(2016), No. 13, p. D728.

    CAS  Google Scholar 

  132. M. Li, Electrochemical studies on the reduction behavior of Co2+ in eutectic NaF-KF melt, Int. J. Electrochem. Sci., 13(2018), p. 4208.

    CAS  Google Scholar 

  133. X.L. Xi, Q.Q. Liu, Z.R. Nie, M. Li, and L.W. Ma, Electrochemical preparation of tungsten and cobalt from cemented carbide scrap in NaF-KF molten salts, Int. J. Refract. Met. Hard Mater., 70(2018), p. 77.

    CAS  Google Scholar 

  134. M. Li, X.L. Xi, Z.R. Nie, L.W. Ma, and Q.Q. Liu, Recovery of tungsten from WC-Co hard metal scraps using molten salts electrolysis, J. Mater. Res. Technol., 8(2019), No. 1, p. 1440.

    CAS  Google Scholar 

  135. L.W. Zhang, Z.R. Nie, and X.L. Xi, Preparation of tungsten nanoparticles from spent tungsten carbide by molten salt electrolysis, Mater. Sci. Forum, 913(2018), p. 961.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51621003) and the Beijing Natural Science Foundation (No. 2204073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-li Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Xl., Feng, M., Zhang, Lw. et al. Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery. Int J Miner Metall Mater 27, 1599–1617 (2020). https://doi.org/10.1007/s12613-020-2175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2175-0

Keywords

Navigation