Skip to main content
Log in

Multi-Brid DBI Inflation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

It is shown that it is possible to extend the application of \(\delta \mathcal{N}\) formalism to some special separable non-canonic cases. In this work, we extended the multi-brid idea to the multi-field separable model with a non-canonical kinetic term, mainly DBI (Dirac–Born–Infeld) action. Multi-brid stands for multi-component hybrid inflation which is based on δN formalism. To be more explicit, we considered the DBI model for two different limits, viz., speed limit and constant sound speed, as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  2. A. D. Linde, Phys. Lett. B 108, 389 (1982).

    Article  ADS  Google Scholar 

  3. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  4. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, et al., arXiv: 1807.06209 [astro-ph.CO] (2020).

  5. Y. Akrami, F. Arroja, M. Ashdown, J. Aumont, et al., arXiv: 1807.06211 [astro-ph.CO] (2019).

  6. Y. Akrami, F. Arroja, M. Ashdown, J. Aumont, et al., arXiv: 1905.05697 [astro-ph.CO] (2019).

  7. M. Alishahiha, E. Silverstein, and D. Tong, Phys. Rev. D 70, 123505 (2004); arXiv: hep-th/0404084.

    Article  ADS  Google Scholar 

  8. G. Dvali and S.-H. H. Tye, Phys. Lett. B 450, 72 (1999); arXiv: hep-th/9812483.

    Article  ADS  MathSciNet  Google Scholar 

  9. S. H. S. Alexander, Phys. Rev. D 65, 023507 (2002); arXiv: hep-th/0105032.

    Article  ADS  MathSciNet  Google Scholar 

  10. S.-H. H. Tye, Lect. Notes Phys. 737, 949 (2008); arXiv: hep-th/0610221.

  11. C. P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh, and R. J. Zhang, J. High Energy Phys., No. 07, 047 (2001); arXiv: hep-th/0105204.

  12. G. R. Dvali, Q. Shafi, and S. Solganik, arXiv: hep-th/0105203 (2001).

  13. S. Kachru, R. Kallosh, A. Linde, J. Maldacena, L. McAllister, and S. P. Trivedi, J. Cosmol. Astropart. Phys., No. 10, 013 (2003); arXiv: hep-th/0308055.

  14. H. Firouzjahi and S.-H. H. Tye, Phys. Lett. B 584, 147 (2004); arXiv: hep-th/0312020.

    Article  ADS  MathSciNet  Google Scholar 

  15. C. P. Burgess, J. M. Cline, H. Stoica, and F. Quevedo, J. High Energy Phys., No. 09, 033 (2004); arXiv: hep-th/0403119.

  16. A. Buchel and R. Roiban, Phys. Lett. B 590, 284 (2004); arXiv: hep-th/0311154.

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Baumann, A. Dymarsky, I. R. Klebanov, J. M. Maldacena, L. P. McAllister, and A. Murugan, J. High Energy Phys., No. 11, 031 (2006); arXiv: hep-th/0607050.

  18. D. Baumann, A. Dymarsky, I. R. Klebanov, and L. McAllister, J. Cosmol. Astropart. Phys., No. 01, 024 (2008); arXiv: 0706.0360 [hep-th].

  19. F. Chen and H. Firouzjahi, J. High Energy Phys., No. 11, 017 (2008); arXiv: 0807.2817 [hep-th].

  20. H. Y. Chen, J. K. Gongb, K. Koyamac, and G. Tasinatod, J. Cosmol. Astropart. Phys., No. 11, 034 (2010); arXiv: 1007.2068 [hep-th].

  21. S. E. Shandera and S. H. Tye, J. Cosmol. Astropart. Phys., No. 05, 007 (2006); arXiv: hep-th/0601099.

  22. C. Armendariz-Picon, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999); arXiv: hep-th/9904075.

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219 (1999); arXiv: hep-th/9904176.

    Article  ADS  MathSciNet  Google Scholar 

  24. A. R. Liddle, A. Mazumdar, and F. E. Schunck, Phys. Rev. D 58, 061301 (1998); arXiv: astro-ph/9804177.

    Article  ADS  Google Scholar 

  25. K. A. Malik and D. Wands, Phys. Rev. D 59, 123501 (1999); arXiv: astro-ph/9812204.

    Article  ADS  Google Scholar 

  26. S. Dimopoulos, S. Kachru, J. McGreevy, and J. Wac-ker, J. Cosmol. Astropart. Phys., No. 08, 003 (2008); arXiv: hep-th/0507205.

  27. D. Battefeld, T. Battefeld, and A. C. Davis, J. Cosmol. Astropart. Phys., No. 10, 032 (2008); arXiv: 0806.1953 [hep-th].

  28. J. Ward, J. High Energy Phys., No. 12, 045 (2007); ar-Xiv: 0711.0760 [hep-th].

  29. Y. F. Cai and W. Xue, Phys. Lett. B 680, 395 (2009); arXiv: 0809.4134 [hep-th].

    Article  ADS  Google Scholar 

  30. M. Sasaki, Prog. Theor. Phys. 120, 159 (2008); arXiv: 0805.0974 [astro-ph].

    Article  ADS  Google Scholar 

  31. A. Naruko and M. Sasaki, Prog. Theor. Phys. 121, 193 (2009); arXiv: 0807.0180 [astro-ph].

    Article  ADS  Google Scholar 

  32. A. Abolhasani, H. Firouzjahi, A. Naruko, and M. Sasaki, Delta N Formalism in Cosmological Perturbation Theory (World Scientific, Singapore, 2019).

    Book  Google Scholar 

  33. Y.-F. Cai and H.-Y. Xia, Phys. Lett. B 677, 226 (2009); arXiv: 0904.0062 [hep-th].

    Article  ADS  Google Scholar 

  34. S. Pi and D. Wang, Nucl. Phys. B 862, 409 (2012); -arXiv: 1107.0813 [hep-th].

    Article  ADS  Google Scholar 

  35. N. S. Sugiyama, E. Komatsu, and T. Futamase, Phys. Rev. D 87, 023530 (2013); arXiv: 1208.1073 [gr-qc].

    Article  ADS  Google Scholar 

  36. A. Naruko, Y. Takamizu, and M. Sasaki, Prog. Theor. Exp. Phys., No. 4, 043E01 (2013).

  37. J. Garriga, Y. Urakawa, and F. Vernizzie, J. Cosmol. Astropart. Phys., No. 02, 036 (2016); arXiv: 1509.07339 [hep-th].

  38. J. Emery, G. Tasinato, and D. Wands, J. Cosmol. Astropart. Phys., No. 08, 005 (2012); arXiv: 1203.6625 [hep-th].

  39. A. Mazumdar and L. Wang, J. Cosmol. Astropart. Phys., No. 09, 005 (2012); arXiv: 1203.3558 [astro-ph.CO].

  40. J. Emery, G. Tasinato, and D. Wands, J. Cosmol. Astropart. Phys., No. 05, 021 (2013); arXiv: 1303.3975 [astro-ph.CO].

  41. T. Kidani, K. Koyamabk, and S. Mizuno, Phys. Rev. D 86, 083503 (2012); arXiv: 1207.4410 [astro-ph.CO].

    Article  ADS  Google Scholar 

  42. H. Firouzjahi and S. Khoeini-Moghaddam, J. Cosmol. Astropart. Phys., No. 02, 012 (2011); arXiv: 1011.4500 [hep-th].

  43. D. Battefeld, T. Battefeld, H. Firouzjahi, and N. Khosravi, J. Cosmol. Astropart. Phys., No. 07, 009 (2010); arXiv: 1004.1417 [hep-th].

  44. E. J. Copeland, S. Mizuno, and M. Shaeri, Phys. Rev. D 81, 123501 (2010); arXiv: 1003.2881 [hep-th].

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to thank H. Firouzjahi for instructive discussions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khoeini-Moghaddam.

DEVELOPMENT OF \(\delta \mathcal{N}\) FORMALISM

DEVELOPMENT OF \(\delta \mathcal{N}\) FORMALISM

In this section we review the approach of [37] to extend \(\delta \mathcal{N}\) formalism to more general cases by using a super-potential formalism.

1.1 A.1. The Background

The Friedman equations are,

$${{H}^{2}} = \frac{{{{\kappa }^{2}}}}{3}(2{{\Sigma }_{I}}{{P}_{{I,{{X}_{I}}}}}{{X}_{I}} - {{P}_{I}}),$$
(A.1)
$$\dot {H} = - \frac{{{{\kappa }^{2}}}}{2}{{\Sigma }_{I}}{{P}_{{I,{{X}_{I}}}}}\mathop {\dot {\phi }}\nolimits_I ,$$
(A.2)

where \({{\kappa }^{2}} = 8\pi G\). We can define momentum as

$$\pi \equiv {{P}_{{I,{{X}_{I}}}}}\mathop {\dot {\phi }}\nolimits_I .$$
(A.3)

Since the Lagrangian is not singular, it is possible to obtain \({{\dot {\phi }}_{I}}\) as a function of ϕI and πI, i.e.,

$$\mathop {\dot {\phi }}\nolimits_I = {{F}_{I}}({{\phi }_{I}},{{\pi }_{I}}).$$
(A.4)

In principle, it is possible to solve the equations of motion and gain πI in terms of ϕI and initial momenta, cI’s. Now we can replace \({{\dot {\phi }}_{I}}\) in energy density and express Hubble Parameter as below, c

$$H = 2W({{\phi }_{J}},{{c}_{J}}).$$
(A.5)

From (2) and (5) it is reasonable to conclude that

$${{\pi }_{I}} = - \frac{4}{{{{\kappa }^{2}}}}\frac{{\partial W}}{{\partial {{\phi }_{I}}}}.$$
(A.6)

Replacing in (1), gives a differential equation for W as,

$${{W}^{2}} = \frac{{{{\kappa }^{2}}}}{{12}}\rho \left[ {{{\phi }_{I}},\frac{{\partial W}}{{\partial {{\phi }_{I}}}}} \right].$$
(A.7)

W is called superpotential.

1.2 A.2. \(\delta \mathcal{N}\) in Non-Slow-Roll Limit

The \(\delta \mathcal{N}\) formalism presume the separate universe assumption. The separate universe approach states that when the physical scale of fluctuations, L, in comparison with the Hubble length, H–1, is very big, i.e., \(L \gg {{H}^{{ - 1}}}\), each region of Hubble size can be considered as a FRW universe; therefore each patch evolves independently. We define small parameter \(\varepsilon \) as \(\varepsilon \equiv \frac{1}{{LH}}\) and expand the equations in the order of that parameter. We employ ADM formalism,

$$\begin{gathered} d{{s}^{2}} = {{g}_{{\mu \nu }}}d{{x}^{\mu }}d{{x}^{\nu }} - \alpha d{{t}^{2}} \\ + \;{{\gamma }_{{ij}}}(d{{x}^{i}} + {{\beta }^{i}}dt)(d{{x}^{j}} + {{\beta }^{j}}dt), \\ \end{gathered} $$
(A.8)

where α and \({{\beta }^{i}}\) are lapse and shift vector, respectively. γij is spatial metric which for later convenience decomposed as

$${{\gamma }_{{ij}}} = {{a}^{2}}{{e}^{{2\mathcal{R}\left( x \right)}}}{{[{{e}^{{h\left( x \right)}}}]}_{{ij}}},$$
(A.9)

\({\text{tr}}[h] = 0\). As usual the extrinsic curvature is defined as below,

$$K = {{\nabla }_{\mu }}{{n}^{\mu }} = \frac{1}{{\sqrt { - g} }}{{\partial }_{\mu }}(\sqrt { - g} {{n}^{\mu }}),$$
(A.10)

the \({{n}^{\mu }}\) is unit tangent vector to time-like congruence orthogonal to t = const hyper-surfaces, nμ = \({{\alpha }^{{ - 1}}}(1, - {{\beta }^{i}})\), replacing in (A.10) we obtain,

$$K = {{\alpha }^{{ - 1}}}[3(H + \dot {\mathcal{R}}) - {{D}_{i}}{{\beta }^{i}}].$$
(A.11)

The the expansion along these normal congruence can be interpreted as difference in number of e-folding, therefore we define the number of e-folds as below,

$${\text{N}} = \frac{1}{3}\int {\alpha Kdt} .$$
(A.12)

The derivative with respect to \({\text{N}}\) is defined as,

$${{\partial }_{{\text{N}}}} \equiv \frac{3}{{\alpha K}}{{\partial }_{t}}.$$
(A.13)

It is assumed that in the limit \(\varepsilon \to 0\) we arrive at FRW. We choose the gauge in which

$${{\partial }^{i}}{{h}_{{ij}}} = 0.$$
(A.14)

In gradient expansion we have [35],

$${{\partial }_{j}}{{\beta }^{i}} = \mathcal{O}({{\varepsilon }^{2}}),$$
(A.15)
$${{\dot {h}}_{{ij}}} = \mathcal{O}({{\varepsilon }^{2}}),$$
(A.16)

and for scalar fields

$${{T}_{{ij}}} - \frac{1}{3}{{\gamma }^{{kl}}}{{T}_{{kl}}}{{\gamma }_{{ij}}} = \mathcal{O}({{\varepsilon }^{2}}).$$
(A.17)

Up to second order of ε, the Einstein equations and the field equations of the scalar fields read as [36],

$${{K}^{2}} = \frac{{{{\kappa }^{2}}}}{3}({{K}^{2}}{{P}_{{I,{{X}_{I}}}}}{{\partial }_{\mathcal{N}}}{{\varphi }_{I}}{{\partial }_{\mathcal{N}}}{{\varphi }_{I}} - 9P) + \mathcal{O}({{\varepsilon }^{2}}),$$
(A.18)
$${{\partial }_{{\text{N}}}}K = - \frac{{{{\kappa }^{2}}}}{2}K{{P}_{{I,{{X}_{I}}}}}{{\partial }_{{\text{N}}}}{{\varphi }_{I}}{{\partial }_{{\text{N}}}}{{\varphi }_{I}} + \mathcal{O}({{\varepsilon }^{2}}),$$
(A.19)
$$\begin{gathered} K{{\partial }_{{\text{N}}}}(K{{P}_{{I,{{X}_{I}}}}}{{\partial }_{{\text{N}}}}{{\phi }_{I}}) + 3{{K}^{2}}{{P}_{{I,{{X}_{I}}}}}\partial {\text{N}}{{\phi }_{I}} \\ - \;9{{P}_{{I,{{\phi }_{I}}}}} = \mathcal{O}({{\varepsilon }^{2}}), \\ \end{gathered} $$
(A.20)

and momentum constraint is as follows,

$${{\partial }_{i}}K = - \frac{{{{\kappa }^{2}}}}{2}K{{P}_{{I,{{X}_{I}}}}}{{\partial }_{{\text{N}}}}{{\phi }^{I}}{{\partial }_{i}}{{\phi }^{I}} + \mathcal{O}(a{{\varepsilon }^{3}}).$$
(A.21)

By taking the spatial derivative of (A.18) and replacing (A.19) and (A.20), we arrive at

$${{\partial }_{i}}K = - \frac{{{{\kappa }^{2}}}}{2}K{{P}_{{I,{{X}_{I}}}}}{{\partial }_{{\text{N}}}}{{\phi }_{I}}{{\partial }_{i}}{{\phi }_{I}} + {{B}_{i}} + \mathcal{O}(a{{\varepsilon }^{3}}),$$
(A.22)

where

$$\begin{gathered} {{B}_{i}} = \frac{{{{\kappa }^{2}}K}}{{2{{\partial }_{{\text{N}}}}\ln{{e}^{{3{\text{N}}}}}K}} \\ \times \,[{{\partial }_{{\text{N}}}}{{\phi }_{I}}{{\partial }_{i}}({{P}_{{I,{{X}_{I}}}}}{{\partial }_{{\text{N}}}}{{\phi }_{I}}) - {{\partial }_{{\text{N}}}}({{P}_{{I,{{X}_{I}}}}}{{\partial }_{{\text{N}}}}{{\phi }_{I}}){{\partial }_{i}}{{\phi }_{I}}]. \\ \end{gathered} $$
(A.23)

By comparing (A.21) and (A.22), it is obvious that for ensuring consistency between Hamilton and momentum constraints, we must have

$${{a}^{{ - 1}}}{{B}_{i}} = ({{\varepsilon }^{3}}).$$
(A.24)

In [37] it is shown that under attractor assumption, this condition is satisfied in more general case than slow-roll condition. With the same argument we said in the background, it is possible to expand the field equation in terms of superpotential as,

$${{P}_{{I,{{X}_{I}}}}}{{\partial }_{{\text{N}}}}{{\phi }^{I}} = - \frac{2}{{{{\kappa }^{2}}}}\frac{{\partial \ln W}}{{\partial {{\phi }^{I}}}} + \mathcal{O}(a{{\varepsilon }^{2}}),$$
(A.25)

where \(K = 6W + \mathcal{O}(a{{\varepsilon }^{2}})\). In attractor regime, we can ignore the dependence of W on cI and the leading term in (A.23) vanishes so the consistency condition is s-atisfied.

From the above discussion we have

$${{D}_{i}}{{\beta }^{i}} = \mathcal{O}({{\varepsilon }^{2}}),$$
(A.26)

so we can ignore the last term in (A.11). We define

$$\delta \mathcal{N}\left( {{{t}_{2}},{{t}_{1}};x} \right) \equiv {\text{N}}\left( {{{t}_{2}},{{t}_{1}};x} \right) - \mathcal{N}\left( {{{t}_{2}},{{t}_{1}}} \right),$$
(A.27)

in which \(\mathcal{N}\left( {{{t}_{2}},{{t}_{1}}} \right)\) is e-folding number in unperturbed universe, replacing (A.11) in (A.12) and neglecting the terms of order \(\mathcal{O}({{\varepsilon }^{2}})\) we arrive at

$$\delta \mathcal{N}\left( {{{t}_{2}},{{t}_{1}};x} \right) = \mathcal{R}\left( {{{t}_{2}},x} \right) - \mathcal{R}\left( {{{t}_{1}},x} \right).$$
(A.28)

At initial space-like hyper-surface \({{\Sigma }_{i}}\) the spatial curvature vanishes, i.e., \(\mathcal{R}\left( {{{t}_{i}},x} \right) = 0\). We choose a constant energy density hyper-surface, Σf, as the final hyper-surface \(\rho \left( {{{t}_{f}},x} \right) \equiv {{\rho }_{f}} = {\text{const}}\). By a appropriate choice of coordinate system, these two hyper-surfaces can be made to be constant t slices. We define the adiabatic curvature perturbation as,

$$\zeta \left( {{{t}_{f}},x} \right) \equiv \mathcal{R}\left( {{{t}_{f}},x} \right).$$
(A.29)

Setting \({{t}_{1}} = {{t}_{i}}\) and \({{t}_{2}} = {{t}_{f}}\) and using separate universe approach we arrive at the usual relation between curvature perturbation and \(\delta \mathcal{N}\),

$$\zeta \left( {{{t}_{f}},x} \right) = \delta \mathcal{N}\left( {{{t}_{f}},{{t}_{i}};x} \right) \equiv \delta \mathcal{N}\left( {{{t}_{f}};\delta {{\phi }_{i}}\left( x \right)} \right),$$
(A.30)

in the above equation we assume that \(\delta {{\phi }_{i}}(x) \equiv \delta \phi ({{t}_{i}},x)\) does not depend on momenta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoeini-Moghaddam, S. Multi-Brid DBI Inflation. Astron. Rep. 64, 1050–1059 (2020). https://doi.org/10.1134/S1063772921020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921020049

Navigation