Skip to main content
Log in

TianQin Space-Based Gravitational Wave Detector: Key Technologies and Current State of Implementation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

TianQin is a project of a space-based gravitational wave detector for detecting GW events in the millihertz frequency range. The space-based detector must be implemented on three identical drag-free spacecraft orbiting around the Earth. The key technologies that form the principles of operation of the space-based GW detector are, first, an ultrastable transponder laser interferometer and, second, a system for compensating nongravitational disturbances. This work discusses the basic principles of operation and the current state of the key technologies developed in the PRC. At the current level of technological readiness, it is expected that TianQin will be launched in the second half of the next decade and will serve as a space observatory for a wide class of astrophysical sources of gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Lynden-Bell and M. J. Rees, Mon. Not. R. Astron. Soc. 152, 461 (1971).

    Article  ADS  Google Scholar 

  2. K. Gultekin, D. O. Richstone, K. Gebhardt, T. R. Lauer, et al., Astrophys. J. 698, 198 (2009).

    Article  ADS  Google Scholar 

  3. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astron. Astrophys. 176, L1 (1987).

    ADS  Google Scholar 

  4. G. Nelemans, ASP Conf. Ser. 467, 27 (2013).

  5. V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin, Phys. Lett. B 115, 189 (1982).

    Article  ADS  Google Scholar 

  6. D. V. Deryagin, D. Yu. Grigoriev, V. A. Rubakov, and M. V. Sazhin, Mon. Not. R. Astron. Soc. 229, 357 (1987).

    Article  ADS  Google Scholar 

  7. S. R. Taylor, R. van Haasteren, and A. Sesana, arXiv: 2006.04810 [astro-ph.IM] (2020).

  8. Assessment Study Report (ESA/SRE, Netherlands, 2011), Vol. 3, p. 129.

  9. T. E. Strohmayer, Astrophys. J. 627, 920 (2005).

    Article  ADS  Google Scholar 

  10. J. Luo, L.-S. Chen, H.-Z. Duan, Y.-G. Gong, et al., Class. Quantum Grav. 33, 035010 (2016).

    Article  ADS  Google Scholar 

  11. B. Hiscock and R. W. Hellings, Bull. Am. Astron. Soc. 29, 1312 (1997).

    ADS  Google Scholar 

  12. S. Kawamura, T. Nakamura, M. Ando, N. Seto, et al., Class. Quantum Grav. 23, S125 (2006).

    Article  Google Scholar 

  13. M. Tinto, J. C. de Araujo, O. D. Aguiar, and M. E. S. Alves, Astropart. Phys. 48, 50 (2013).

    Article  ADS  Google Scholar 

  14. M. Ming, Y. Luo, Y.-R. Liang, J.-Y. Zhang, et al., Int. J. Extreme Manuf. 2, 022003 (2020).

    Article  Google Scholar 

  15. D. A. Shaddock, B. Ware, R. E. Spero, and M. Vallisneri, Phys. Rev. D 70, 081101 (2004).

    Article  ADS  Google Scholar 

  16. T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).

    Article  ADS  Google Scholar 

  17. P. W. McNamara, Class. Quantum Grav. 22, S243 (2005).

    Article  ADS  Google Scholar 

  18. C. Diekmann, F. Steier, B. Sheard, G. Heinzel, and K. Danzmann, J. Phys.: Conf. Ser. 154, 01202 (2009).

    Google Scholar 

  19. T. Tolker-Nielsen and G. Oppenhauser, Proc. SPIE 4635, 1 (2002).

    Article  ADS  Google Scholar 

  20. T. Jono, T. Yoshihisa, K. N. Kura; O. Koichi, et al., Proc. SPIE 6105, 610503 (2006).

    Article  Google Scholar 

  21. K. Danzmann and A. Rüdiger, Class. Quantum Grav. 20, S1 (2003).

    Article  ADS  Google Scholar 

  22. B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, J. Geodesy 86, 1083 (2012).

    Article  ADS  Google Scholar 

  23. H. C. Yeh, Q. Z. Yan, Y. R. Liang, Y. Wang, and J. Luo, Rev. Sci. Instrum. 82, 044501 (2011).

    Article  ADS  Google Scholar 

  24. G. Heinzel, V. W. A. Garcia, O. Jennrich, et al., Class. Quantum Grav. 21, S581 (2004).

    Article  Google Scholar 

  25. P. Touboul, E. Willemenot, B. Foulon and V. Josselin, Boll. Geofis. Teor. Appl. 40, 321 (1999).

    Google Scholar 

  26. E. Willemenot and P. Touboul, Rev. Sci. Instrum. 71, 310 (2000).

    Article  ADS  Google Scholar 

  27. J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker, Liv. Rev. Relat. 16, 1 (2013).

    Article  Google Scholar 

  28. M. Armano, H. Audley, J. Baird, P. Binetruy, et al., Phys. Rev. D 99, 122003 (2019).

    Article  ADS  Google Scholar 

  29. G. Anderson, G. Anderson, J. Anderson, M. Anderson, et al., Phys. Rev. D 98, 102005 (2018).

    Article  ADS  Google Scholar 

  30. Y. Luo, H. Li, H.-C. Yeh, and J. Luo, Rev. Sci. Instrum. 86, 044501 (2015).

    Article  ADS  Google Scholar 

  31. Y. Luo, H. Li, and H.-C. Yeh, Rev. Sci. Instrum. 87, 056105 (2016).

    Article  ADS  Google Scholar 

  32. Y. Liang, H.-Z. Duan, H.-C. Yeh, and J. Luo, Rev. Sci. Instrum. 83, 095110 (2012).

    Article  ADS  Google Scholar 

  33. Y. Liang, H.-Z. Duan, X.-L. Xiao, and H.-C. Yeh, Rev. Sci. Instrum. 86, 016106 (2015).

    Article  ADS  Google Scholar 

  34. H. Yan, H.-Z. Duan, L.-T. Li, Y. Liang, J. Luo, and H.-C. Yeh, Rev. Sci. Instrum. 86, 123102 (2015).

    Article  ADS  Google Scholar 

  35. J.-Y. Zhang, M. Ming, Y.-Z. Jiang, H.-Z. Duan, and H.-C. Yeh, Rev. Sci. Instrum. 89, 064501 (2018).

    Article  ADS  Google Scholar 

  36. Y. Z. Bai, Z. Li, M. Hu, L. Liu, et al., Sensors 17, 1943 (2017).

    Article  Google Scholar 

  37. Y. He, Q. Liu, H.-Z. Duan, J.-J. He, Y.-Z. Jiang, and H.-C. Yeh, Res. Astron. Astrophys. 18, 131 (2018).

    Article  ADS  Google Scholar 

  38. J. Luo, Y-Zh. Bai, L. Cai, et al., Class. Quantum Grav. 37, 185013 (2020).

Download references

Funding

The work was carried out within the framework of the MSU Scientific and Educational School “Fundamental and Applied Space Research” and was supported by the Russian Foundation for Basic Research, grant no. 19-29-11008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Milyukov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyukov, V.K. TianQin Space-Based Gravitational Wave Detector: Key Technologies and Current State of Implementation. Astron. Rep. 64, 1067–1077 (2020). https://doi.org/10.1134/S1063772920120070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920120070

Navigation