Skip to main content
Log in

Modeling of Hydrogen Emission Lines in the Spectrum of UX Ori in Its Bright State and during Eclipses

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—

The hydrogen spectrum of the UX Ori-type star is modeled in a bright state and during an eclipse by an opaque dusty fragment of its own protoplanetary disk. The disk wind is considered as the main source of the emission spectrum. The radiation generated in the stellar magnetosphere is also taken into account. We showed that variations in the Hα line profile during eclipses depend sensitively on the wind opening angle. In models with a large opening angle, the emission line at the minimum brightness becomes single, asymmetric, and shifts towards the red end, which contradicts the observations made in 1992 during the deep minimum of UX Ori, when the asymmetric two-peak emission line turned into an asymmetric single and practically unbiased line. This indicates that one more source contributes to the emission spectrum, which is not occulted by an opaque screen at the moments of eclipses. As possible options, we considered (a) scattered radiation of a hypothetical dust halo in the polar region of the disk and (b) peripheral layers of the gas atmosphere of the disk, which are the source of the photoevaporation wind. To clarify the situation, new high-quality observations of the spectra of this type of star in deep minima are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. The second international Workshop “UX Ori type stars and related topics”, http://www.uxor.ru.

REFERENCES

  1. V. P. Grinin, N. N. Kiselev, N. Kh. Minikulov, G. P. Chernova, and N. V. Voshchinnikov, Astrophys. Space Sci. 186, 283 (1991).

    Article  ADS  Google Scholar 

  2. A. N. Rostopchina, V. P. Grinin, D. N. Shakhovskoi, A. A. Lomach, and N. Kh. Minikulov, Astron. Rep. 51, 869 (2007).

    Article  ADS  Google Scholar 

  3. A. Kreplin, G. Weigelt, S. Kraus, V. Grinin, et al., Astron. Astrophys. 551, A21 (2013).

    Article  Google Scholar 

  4. A. Kreplin, D. Madlener, L. Chen, G. Weigelt, S. Kraus, V. Grinin, L. Tambovtseva, and M. Kishimoto, Astron. Astrophys. 590, A96 (2016).

    Article  ADS  Google Scholar 

  5. C. L. Davies, A. Kreplin, J. Kluska, E. Hone, and S. Kraus, Mon. Not. R. Astron. Soc. 474, 5406 (2018).

    Article  ADS  Google Scholar 

  6. I. S. Potravnov and V. P. Grinin, Astron. Lett. 39, 776 (2013).

    Article  ADS  Google Scholar 

  7. R. Garcia Lopez, A. Natta, L. Testi, and E. Habart, Astron. Astrophys. 459, 837 (2006).

    Article  ADS  Google Scholar 

  8. I. Mendigutía, N. Calvet, B. Montesinos, A. Mora, J. Muzerolle, C. Eiroa, R. D. Oudmaijer, and B. Merin, Astron. Astrophys. 535, A99 (2011).

    Article  ADS  Google Scholar 

  9. L. V. Tambovtseva, V. P. Grinin, and O. V. Kozlova, Astrophysics 42, 54 (1999).

    Article  ADS  Google Scholar 

  10. L. V. Tambovtseva, V. P. Grinin, B. Rodgers, and O. V. Kozlova, Astron. Rep. 45, 442 (2001).

    Article  ADS  Google Scholar 

  11. P. W. Cauley and C. M. Johns-Krull, Astrophys. J. 797, 112 (2014).

    Article  ADS  Google Scholar 

  12. E. Alecian, G. A. Wade, C. Catala, J. H. Grunhut, et al., Mon. Not. R. Astron. Soc. 429, 1001 (2013).

    Article  ADS  Google Scholar 

  13. S. Hubrig, T. A. Carroll, M. Schöller, and I. Ilyin, Mon. Not. R. Astron. Soc. 449, L118 (2015).

    Article  ADS  Google Scholar 

  14. S. P. Järvinen, T. A. Carroll, S. Hubrig, I. Ilyin, and M. Schöller, Mon. Not. R. Astron. Soc. 489, 886 (2019).

    ADS  Google Scholar 

  15. J. Muzerolle, P. D’Alessio, N. Calvet, and L. Hartmann, Astrophys. J. 617, 406 (2004).

    Article  ADS  Google Scholar 

  16. V. P. Grinin, P. S. Thé, D. de Winter, M. Giampapa, A. N. Rostopchina, L. V. Tambovtseva, and. M. E. van den Ancker, Astron. Astrophys. 292, 165 (1994).

    ADS  Google Scholar 

  17. R. L. Kurucz, Astrophys. Space Sci. 40, 1 (1979).

    Google Scholar 

  18. L. Hartmann, R. Hewett, and N. Calvet, Astrophys. J. 426, 669 (1994).

    Article  ADS  Google Scholar 

  19. J. Muzerolle, N. Calvet, and L. Hartmann, Astrophys. J. 550, 944 (2001).

    Article  ADS  Google Scholar 

  20. L. V. Tambovtseva, V. P. Grinin, and G. Weigelt, Astron. Astrophys. 562, A104 (2014).

    Article  ADS  Google Scholar 

  21. R. D. Blandford and D. J. Payne, Mon. Not. R. Astron. Soc. 199, 883 (1982).

    Article  ADS  Google Scholar 

  22. M. Wardle and A. Königl, Astrophys. J. 410, 218 (1993).

    Article  ADS  Google Scholar 

  23. R. E. Pudritz and C. A. Norman, Astrophys. J. 301, 571 (1996).

    Article  ADS  Google Scholar 

  24. A. Königl, and R. E. Pudritz, in Protostars and Planets IV, Ed. by V. Mannings, A. P. Boss, and S. S. Russell (Univ. of Arizona PressTucson, 2000), p. 759.

    Google Scholar 

  25. J. Ferreira, in Angular Momentum Transport During Star Formation and Evolution, Ed. by P. Hennebelle and C. Charbonnel, EAS Publ. Ser. 62, 16 (2013).

  26. G. H. R. A. Lima, S. H. P. Alencar, N. Calvet, L. Hartmann, and J. Muzerolle, Astron. Astrophys. 522, A104 (2010).

    Article  ADS  Google Scholar 

  27. S. Teitler, Astrophys. J. 733, 57 (2011).

    Article  ADS  Google Scholar 

  28. J. Ferreira, C. Dougados, and S. Cabrit, Astron. Astrophys. 453, 785 (2006).

    Article  ADS  Google Scholar 

  29. R. Kurosawa, T. J. Harries, and N. H. Symington, Mon. Not. R. Astron. Soc. 370, 580 (2006).

    Article  ADS  Google Scholar 

  30. P. Safier, Astrophys. J. 408, 115 (1993).

    Article  ADS  Google Scholar 

  31. P. J. V. Garcia, J. Ferreira, S. Cabrit, and L. Binette, Astron. Astrophys. 377, 589 (2001).

    Article  ADS  Google Scholar 

  32. V. P. Grinin, L. V. Tambovtseva, and D. E. Mkrtichian, in The Bee Phenomenon: Forty Years of Studies, Ed. by A. Miroshnichenko, S. Zharikov, D. Korcáková, and M. Wolf, ASP Conf. Ser. 508, 185 (2017).

    Google Scholar 

  33. V. P. Grinin and L. V. Tambovtseva, Astron. Rep. 55, 704 (2011).

    Article  ADS  Google Scholar 

  34. J. S. Vink, J. E. Drew, T. J. Harries, and R. D. Oudmaijer, Mon. Not. R. Astron. Soc. 337, 356 (2002).

    Article  ADS  Google Scholar 

  35. J. S. Vink, J. E. Drew, T. J. Harries, R. D. Oudmaijer, and Y. Unruh, Mon. Not. R. Astron. Soc. 359, 1049 (2005).

    Article  ADS  Google Scholar 

  36. J. C. Mottram, J. S. Vink, R. D. Oudmaijer, and M. Patel, Mon. Not. R. Astron. Soc. 377, 1363 (2007).

    Article  ADS  Google Scholar 

  37. K. M. Ababakr, R. D. Oudmaijer, and J. S. Vink, Mon. Not. R. Astron. Soc. 472, 854 (2017).

    Article  ADS  Google Scholar 

  38. V. P. Grinin and O. V. Kozlova, Astrophysics 43, 239 (2000).

    Article  ADS  Google Scholar 

  39. D. V. Dmitriev, V. P. Grinin, and N. A. Katysheva, Astron. Lett. 45, 371 (2019).

    Article  ADS  Google Scholar 

  40. V. P. Grinin, in Stars from Collapse to Collapse, Ed. by Yu. Yu. Balega, D. O. Kudryavtsev, I. I. Romanyuk, and I. A. Yakunin, ASP Conf. Ser. 510, 32 (2017).

    Google Scholar 

  41. A. Natta, T. Prusti, R. Nery, D. Wooden, V. P. Grinin, and V. Mannings, Astron. Astrophys. 371, 186 (2001).

    Article  ADS  Google Scholar 

  42. C. P. Dullemond and J. D. Monnier, Ann. Rev. Astron. Astrophys. 48, 205 (2010).

    Article  ADS  Google Scholar 

  43. S. G. Shulman and V. P. Grinin, Astron. Lett. 45, 384 (2019).

    Article  ADS  Google Scholar 

  44. S. G. Shulman and V. P. Grinin, Astron. Lett. 45, 664 (2019).

    Article  ADS  Google Scholar 

  45. P. Godon and M. Livio, Astrophys. J. 537, 396 (2000).

    Article  ADS  Google Scholar 

  46. P. Barge and M. Viton, Astrophys. J. 593, L117 (2003).

    Article  ADS  Google Scholar 

  47. L. V. Tambovtseva and V. P. Grinin, Astron. Lett. 34, 231 (2008).

    Article  ADS  Google Scholar 

  48. N. J. Turner, M. Benisty, C. P. Dullemond, and S. Hirose, Astrophys. J. 780, 42 (2014).

    Article  ADS  Google Scholar 

  49. S. Giacalone, S. Teitler, A. Königl, S. Krijt, and F. J. Ciesla, Astrophys. J. 882, 33 (2019).

    Article  ADS  Google Scholar 

  50. F. H. Shu, J. Najita, E. Ostriker, and F. Wilkin, Astrophys. J. 429, 781 (1994).

    Article  ADS  Google Scholar 

  51. F. H. Shu, J. Najita, S. P. Ruden, and S. Lizano, Astrophys. J. 429, 797 (1994).

    Article  ADS  Google Scholar 

  52. V. P. Grinin, O. V. Kozlova, and A. N. Rostopchina, in The Nature and Evolutionary Status of Herbig Ae/Be Stars, Ed. by Pik Sin Thé, M. R. Perez, and E. P. J. van den Heuvel, ASP Conf. Ser. 62, 232 (1994).

  53. V. P. Grinin, O. V. Kozlova, A. Natta, I. Ilyin, I. Tuominen, A. N. Rostopchina, and D. N. Shakhovskoy, Astron. Astrophys. 379, 482 (2001).

    Article  ADS  Google Scholar 

  54. A. Mora, A. Natta, C. Eiroa, C. A. Grady, et al., Astron. Astrophys. 393, 359 (2002).

    Article  Google Scholar 

  55. G. Gahm, in UX Ori Type Stars and Related Topics, Proceedings of the 2nd Workshop, 2019, St. Petersburg, Russia. http://www.uxor.ru/images/presentation/gahm.pdf

  56. V. V. Sobolev, Sov. Astron. 1, 678 (1957).

    ADS  Google Scholar 

  57. E. A. Kolotilov, Astrophysics 13, 17 (1977).

    Article  ADS  Google Scholar 

  58. B. Rodgers, D. Wooden, V. Grinin, D. Shakhovskoj, and A. Natta, Astrophys. J. 564, 405 (2002).

    Article  ADS  Google Scholar 

  59. V. P. Grinin, L. V. Tambovtseva, and G. Weigelt, Astron. Astrophys. 544, A45 (2012).

    Article  ADS  Google Scholar 

  60. I. Appenzeller, C. Bertout, and O. Stahl, Astron. Astrophys. 434, 1005 (2005).

    Article  ADS  Google Scholar 

  61. G. Weigelt, V. P. Grinin, J. H. Groh, K.-H. Hofmann, et al., Astron. Astrophys. 527, A103 (2011).

    Article  Google Scholar 

  62. R. Garcia Lopez, L. V. Tambovtseva, D. Schertl, V. P. Grinin, K.-H. Hofmann, G. Weigelt, and A. Caratti o Garatti, Astron. Astrophys. 576, A84 (2015).

    Article  ADS  Google Scholar 

  63. A. Caratti o Garatti, L. V. Tambovtseva, R. Garcia Lopez, S. Kraus, et al., Astron. Astrophys. 282, A44 (2015).

  64. A. Kreplin, L. Tambovtseva, V. Grinin, S. Kraus, G. Weigelt, and Y. Wang, Mon. Not. R. Astron. Soc. 476, 4520 (2018).

    Article  ADS  Google Scholar 

  65. L. V. Tambovtseva, V. P. Grinin, and G. Weigelt, Astron. Astrophys. 590, A97 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the referee for useful comments and suggestions. The work is supported by the project of Ministry of Education and Science № 13.1902.21.0039.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Tambovtseva, V. P. Grinin or D. V. Dmitriev.

Additional information

Translated by E. Seifina

APPENDIX

APPENDIX

In the Appendix, we offer additional material that may be useful for studying UX Ori-type stars.

1.1 Magnetospheric Accretion

As already mentioned, we assume that the use of the classical scheme of magnetospheric accretion for rapidly rotating HAEBE stars will be incorrect. However, this type of accretion can, in principle, be realized with a sufficiently strong intrinsic field of the star. In this case, the accreting material will be delivered to the poles of the star. For this case, we calculated the Hα line profiles for several models and some of them are presented in this Appendix.

A scheme of classical magnetospheric accretion, which is usually used for T Tauri stars, is shown in Fig. 11. It is assumed that the magnetosphere is formed by a dipole magnetic field, the axis of which coincides with the rotation axis of the star. The outer \({{r}_{{mo}}}\) and inner \({{r}_{{mi}}}\) boundaries of the magnetosphere exist, and the gas moves to the star along the magnetic lines only under gravity. The start region on the disk is between these terms. The magnetosphere rotates solidly at the speed of the star at the equator (150 km/s). Radiation transfer in spectral lines is considered in the Sobolev approximation taking into account the nonlocal radiation interaction. A detailed calculation algorithm is given in [39].

Fig. 11.
figure 11

Scheme of classical magnetospheric accretion for the star UX Ori.

Two models of magnetospheric accretion with the inner \(1.2{{R}_{*}}\) and outer \(1.7{{R}_{*}}\) radius of the magnetosphere (model CMA1) and, respectively, \(1.5{{R}_{*}}\) and \(2.5{{R}_{*}}\) (model CMA2), are presented. Another parameter of the model was the gas temperature near the star’s surface, which was set in such a way that the maximum gas temperature in calculating the heat balance was 8000 K. The change in gas temperature with distance along the magnetic field lines is shown in Fig. 12. Both models were calculated for three values of the accretion rate: \({{\dot {M}}_{{{\text{acc}}}}} = 1 \times {{10}^{{ - 8}}}\,{{M}_{ \odot }}\), 3 × 10–8 \({{M}_{ \odot }}\), and \(1 \times {{10}^{{ - 7}}}\;{{M}_{ \odot }}\)/year. The inclination is \(i = 70^\circ \). The H\(\alpha \) line profiles in the classical magnetospheric accretion models with the parameters CMA1 and CMA2 are shown in Fig. 13. When calculating the profiles with an accretion rate \({{10}^{{ - 7}}}\,{{M}_{ \odot }}\)/year, the Stark effect was taken into account. It should be noted that with an increase in the accretion rate up to this value, the H\(\alpha \) line takes the form of an inverse P Cyg profile.

Fig. 12.
figure 12

Temperature variation with distance from the star in the models of classical magnetospheric accretion CMA1 and CMA2 with a maximum gas temperature of 8000 K.

Fig. 13.
figure 13

Profiles of H\(\alpha \) lines in the models of classical magnetospheric accretion CMA1 (a–c) and CMA2 (d–f). From top to bottom, line profiles for accretion rates are shown: \({{\dot {M}}_{{{\text{acc}}}}} = 1 \times {{10}^{{ - 7}}}\;{{M}_{ \odot }}\)/year (top panel), \(3 \times {{10}^{{ - 8}}}\;{{M}_{ \odot }}\)/year (middle panel), and \(1 \times {{10}^{{ - 8}}}\;{{M}_{ \odot }}\)/year (bottom panel). The tilt angle is 70°.

1.2 The Influence of Moving Dust on Hα Line Profiles

Modeling of radiation scattering by stationary dust particles located in a continuously moving medium is a simplification of the problem. Dust can be on the walls of the cavity formed during the evolution of the system by outflows of matter in the region of the poles; this “wall” becomes the boundary of the disk wind zone, which rises above the disk surface and rotates. Therefore, dust particles also participate in complex motion. Therefore, we checked how the radial and tangential motion of dust affects the calculated Hα line profiles. The calculation algorithm is described in detail in [59]. Figure 14 shows the Hα line profiles from the last (lower) row in Fig. 7 (i.e., obtained at the moment of minimum star brightness) for the same hybrid models, and then light scattered by dust located in the polar region of 20° from the polar axis and moving at a speed of –100 km/s, i.e., to the star, and at a speed of 100 km/s, i.e., from the star. In the first case, besides the fact that the scattered light changes the shape of the line profile, it also shifts it entirely towards negative radial velocities. In the second case, the line profile shifts towards positive radial velocities. The amount of displacement depends on the speed of the dust and the inclination. The value of 100 km/s was chosen to better illustrate the effect. In Fig. 15, the same profiles of all the considered models obtained at the minimum brightness of the star are influenced only by the rotation of dust at a speed of 100 km/s. The light scattered by the spinning dust expands the line profiles and smooths their shape, making them single. The combined effect of dust motion thus leads to displacement, expansion and smoothing of the line -profiles.

Fig. 14.
figure 14

Influence of the radial component of the dust velocity on the H\(\alpha \) line profiles during the brightness minimum in models 1–5. “0” denotes the case of stationary dust; –100 and 100 denote dust approaching the star and receding from the star at 100 km/s, respectively.

Fig. 15.
figure 15

Influence of the tangential component of the dust velocity on the Hα line profiles during the brightness minimum in models 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tambovtseva, L.V., Grinin, V.P. & Dmitriev, D.V. Modeling of Hydrogen Emission Lines in the Spectrum of UX Ori in Its Bright State and during Eclipses. Astron. Rep. 64, 1026–1041 (2020). https://doi.org/10.1134/S1063772920120148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920120148

Navigation