Skip to main content
Log in

Thermochemical Stability of Extraction Systems for SNF Processing

  • Published:
Radiochemistry Aims and scope

Abstract

Thermal stability of extraction systems containing N,N,N′,N ′-tetra-n-octyldiglycolamide (TODGA), di(N-ethyl-4-hexylanilide) 2,2′-bipyridine-6,6′-dicarboxylic acid (DYP-7), di(N-ethyl-4-fluoroanilide) of 2,6-pyridinecarboxylic acid Et(pFPh)DPA, di(N -ethyl-4-ethylanilide) of 2,2′-bipyridine-6,6′-dicarboxylic acid (DYP-9) under the conditions capable of causing emergencies, i.e., those unfavorable as regards the fire and explosion safety. It was found that irradiation with accelerated electrons of a TODGA–Isopar-М mixture in an n-alcohol affects the possibility of a thermal explosion and shown that the irradiation is accompanied by an intense evolution of gases. The possibility of passing from the oxidation of organic components of the system by nitric acid to the burning and explosion mode was evaluated. It was found that, with diamides used, the pressures of gaseous products of exothermic reactions are substantially lower than those with TODGA and TBP, which makes them promising extracting mixtures as regards the safety of the technological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Egorov, G.F., Radiatsionnaya khimiya ekstraktsionnykh sistem (Radiation Chemistry of Extraction Systems), Moscow: Energoatomizdat, 1986.

    Google Scholar 

  2. Gromov, B.V., Sudarikov, B.N., Savel’eva, V.I., Rakov, E.G. and Zaitsev, V.A., Khimicheskaya tekhnologiya obluchennogo yadernogo goryuchego (Chemical Technology of Irradiated Nuclear Fuel), Moscow: Atomizdat, 1971.

    Google Scholar 

  3. Herbst, R.S., Law, J.D., Todd, T.A., Romanovskiy, V.N., Babain, V.A., Esimantovskiy, V.N., Smirnov, I.V., and Zaitsev, B.N., Solvent Extr. Ion Exch., 2002, vol. 20, nos. 4–5, p. 429.

    Article  CAS  Google Scholar 

  4. Law, J.D., Herbst, R.S., Todd, T.A., Romanovskiy, V.N., Babain, V.A., Esimantovskiy, V.N., Smirnov, I.V., and Zaitsev, B.N., Solvent Extr. Ion Exch., 2001, vol. 19, no. 1, p. 23.

    Article  CAS  Google Scholar 

  5. Herbst, R.S., Law, J.D., Todd, T.A., Romanovskiy, V.N., Smirnov, I.V., Babain, V.A., Esimantovskiy, V.N., and Zaitsev, B.N., Sep. Sci. Technol., 2003, vol. 38, no. 12–13, p. 2685.

    Article  CAS  Google Scholar 

  6. Romanovskiy, V.N., Smirnov, I.V., and Babain, V.A., Solvent Extr Ion Exch., 2001, vol. 19, p. 1.

    Article  CAS  Google Scholar 

  7. Kumar, S., Muthukumar, M., Sinha, P.K., Kamachi Mudali, U., and Natarajan, R., J. Radioanal. Nucl. Chem., 2011, vol. 289, p. 247.

    Article  CAS  Google Scholar 

  8. Myasoedov, B.F. and Kalmykov, S.N., Mendeleev Commun., 2015, vol. 25, p. 319.

    Article  CAS  Google Scholar 

  9. Herbst, R.S., Luther, T.A., Peterman, D.R., Babain, V.A., Smirnov, I.V., and Stoyanov, E.S., Nucl. Waste Manag., 2006, vol. 943, p. 171.

    Article  CAS  Google Scholar 

  10. Paulenova, A., Alyapyshev, M.Y., Babain, V.A., Herbst, R.S., and Law, J.D., Sep. Sci. Technol., 2008, vol. 43, no. 9–10, p. 2606.

    Article  CAS  Google Scholar 

  11. Paulenova, A., Alyapyshev, M.Y., Babain, V.A., Herbst, R.S., and Law, J.D., Solvent Extr. Ion Exch., 2013, vol. 31, no. 2, p. 184.

    Article  CAS  Google Scholar 

  12. Alyapyshev, M., Babain, V., Borisova, N., Eliseev, I., Kirsanov, D., Kostin, A., Legin, A., Reshetova, M., and Smirnova, Z., Polyhedron, 2010, vol. 29, no. 8, p. 1998.

    Article  CAS  Google Scholar 

  13. Alyapyshev, M.Y., Babain, V.A., Tkachenko, L.I., Paulenova, A., Popova, A.A., and Borisova, N.E., Solvent Extr. Ion Exch., 2014, vol. 32, no. 2, p. 138.

    Article  CAS  Google Scholar 

  14. Alyapyshev, M.Y., Babain, V.A., Borisova, N.E., Kisele-va, R.N., Safronov, D.V., Reshetova, M.D., Mendeleev Commun., 2008, vol. 18, p. 336.

    Article  CAS  Google Scholar 

  15. Borisova, N.E., Korotkov, L.A., Ivanov, A.V., Lapka, J., Paulenova, A., Belova, E.V., Stefanovsky, S.V., and Myasoedov, B.F., Radiochemistry, 2016, vol. 58, no. 6, p. 606. https://doi.org/10.1134/S1066362216060072

    Article  CAS  Google Scholar 

  16. Alyapyshev, M.Yu., Babain, V.A., Tkachenko, L.I., Eliseev, I.I., Didenko, A.V., and Petrov, M.L., Solvent Extr. Ion Exch., 2011, vol. 29, no. 4, p. 619.

    Article  CAS  Google Scholar 

  17. Alyapyshev, M., Babain, V., Eliseev, I., and Tkachenko, L., Proc. Int. Conf. Global 2011, Makuhari Messe (Japan): JAEA, Dec. 11–16, 2011. Paper 357771.

  18. Alyapyshev, M.Yu., Babain, V.A., Eliseev, I.I., Tkachenko, L.I., Ustynyuk, Yu.A., Reshetova, M.D., Borisova, N.E., Ivanov, A.V., and Logunov, M.V., RU Patent 2499308S2, 2012.

  19. Belova, E.V., Nazin, E.R., Skvortsov, I.V., Sokolov, I.P., Rodin, A.V., Stefanovsky, S.V., and Myasoedov, B.F., Radiochemistry, 2016, vol. 58, no. 5, p. 486. https://doi.org/10.1134/S1066362216050076

    Article  CAS  Google Scholar 

  20. Goletskii, N.D., Zil’berman, B.Ya., Myasoedov, B.F., Naumov, A.A., and Romanovskii, V.N., RU Patent 2623943C1, 2016.

  21. Hayder, M.L., Safe Conditions for Contacting Nitric Acid or Nitrates with Tri-n-butyl Phosphate (TBP): WSRC-TR-94-059, Savannah: Savannah River Univ., 1994.

    Book  Google Scholar 

  22. Nowak, Z. and Nowak, M., Radiochem. Radioanal. Lett., 1979, vol. 38, no. 5, p. 377.

    CAS  Google Scholar 

  23. Robinson, R., Gutowski, D., and Yeniscavich, W., Control of Red Oil Explosions in Defense Nuclear Facilities 2003: Technical Report, 2003.

  24. Usachev, V.N. and Markov, G.S., Radiochemistry, 2003, vol. 45, no. 1, p. 1. https://doi.org/10.1023/A:1022353014980

    Article  CAS  Google Scholar 

  25. Skvortsov, I.V., Kalistratova, V.V., Belova, E.V., Rodin, A.V., Sokolov, I.P., and Myasoedov, B.F., Radiochemistry, 2017, vol. 59, no. 6, p. 539. https://doi.org/10.1134/S1066362217060091

    Article  Google Scholar 

  26. Skvortsov, I.V., Kalistratova, V.V., Rodin, A.V., Belova, E.V., Myasoedov, B.F., Borisova, N.E., and Tsarev, D.A., Radiochemistry, 2018, vol. 60, no. 6, p. 515. https://doi.org/10.1134/S1066362218060061

    Article  Google Scholar 

  27. Skvortsov, I.V., Belova, E.V., Pavlov, Yu.S., and Myasoedov, B.F., Radiochemistry, 2018, vol. 60, no. 6, p. 510. https://doi.org/10.1134/S106636221806005X

    Article  Google Scholar 

  28. Skvortsov, I.V., Belova, E.V., Sokolov, I.P., Rodin, A.V., Stefanovsky, S.V., and Mysoedov, B.F., Nucl. Eng. Technol., 2018, vol. 51, no. 6, p. 1421.

    Article  Google Scholar 

  29. Skvortsov, I.V., Belova, E.V., Rodin, A.V., Borisova, N.E., Ivanov, A.V., and Myasoedov, B.F., Radiochemistry, 2017, vol. 59, no. 6, p. 534. https://doi.org/10.1134/S106636221706008X

    Article  Google Scholar 

  30. Belova, E.V., Skvortsov, I.V., Dzhivanova, Z.V., and Nikitina, Yu.V., Tr. Kol’skogo nauch. tsentra RAN. Khimiya i materialovedenie, 2018, no. 2(1), p. 230. https://doi.org/10.25702/KSC.2307-5252.2018.9.1.230-233.

  31. Skvortsov, I.V., Belova, E.V., and Yudintsev, S.V., Nucl. Eng. Technol., 2020. https://doi.org/10.1016/j.net.2020.02.024

  32. Skvortsov, I.V., Smirnov, A.V., and Belova, E.V., J. Therm. Anal. Calorim., 2020. (Accepted for printing).

  33. Nazin, E.R., Zachinyaev, G.M., Rodin, A.V., Belova, E.V., Thorzhnitsky, G.P., and Myasoedov, B.F., Nucl. Techol., 2016, vol. 194, no. 3, p. 369.

    Article  Google Scholar 

  34. Nazin, E.R., Zachinyaev, G.M., Belova, E.V., Tkhorzhnitskii, G.P., and Myasoedov, B.F., Radiochemistry, 2017, vol. 59, no. 5, p. 512. https://doi.org/10.1134/S1066362217050125

    Article  CAS  Google Scholar 

  35. Belova, E.V., Dzhivanova, Z.V., Smirnov, A.V., Kadyko, M.I., and Stefanovsky, S.V., MRS Adv., 2017, vol. 2, no. 11, p. 627.

    Article  CAS  Google Scholar 

  36. Belova, E.V., Dzhivanova, Z.V., Myasoedov, B.F., and Stefanovsky, S.V., MRS Adv., 2018, vol. 3, no. 21, p. 1181.

    Article  CAS  Google Scholar 

  37. Dzhivanova, Z.V., Smirnov, A.V., Pavlov, Yu.S., and Belova, E.V., Prog. Nucl. Energy, 2020, vol. 119, ID 103174.

    Article  CAS  Google Scholar 

  38. Nazin, E.R. and Zachinyaev, G.M., Pozharovzryvobezopasnost’ tekhnologicheskikh protsessov radiokhimicheskikh proizvodstv (Fire and Explosion Safety of Technological Processes of Radiochemical Production.), Moscow: SEC NRS, 2009.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.I. Kadyko for examining by IR spectrometry the nature of water-soluble products formed in radiolysis of the extracting mixtures under study.

Funding

The study was financially supported by the Russian Science Foundation (project no. 16-19-00191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Belova.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, E.V., Skvortsov, I.V., Sokolov, I.P. et al. Thermochemical Stability of Extraction Systems for SNF Processing. Radiochemistry 62, 736–743 (2020). https://doi.org/10.1134/S1066362220060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220060053

Keywords:

Navigation