Skip to main content
Log in

Electro- and Magnetoactive Materials in Medicine: A Review of Existing and Potential Areas of Application

  • Published:
Inorganic Materials Aims and scope

Abstract

The review covers problems related to development and application of a new type of “smart” medical materials, mainly, for regeneration of bone tissue that are capable of creating additional stimuli influencing the regeneration process. Application of ferroelectric and magnetoelastic materials is discussed, including their use as sensors and actuators. Physical and materials science principles of development, along with examples of using composite magnetoelectric materials of the piezoelectric/magnetoelastic type as magnetically controlled scaffolds creating local electric fields, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wong, V.W., Wan, D.C., Gurtner, G.C., and Longaker, M.T., Regenerative surgery: tissue engineering in general surgical practice, World J. Surg., 2012, vol. 36, no. 10, pp. 2288–2299. https://doi.org/10.1007/s00268-012-1710-1

    Article  PubMed  Google Scholar 

  2. Tkachuk, V.A., Stvolovye kletki i regenerativnaya meditsina (Stem Cells and Regenerative Medicine), Moscow: Mosk. Gos. Univ., 2014.

  3. Sevast’yanov, V.I., Biomaterials, drug delivery systems, and bioengineering, Vestn. Transplantologii Iskusstv. Organov, 2009, vol. 11, no. 3, pp. 69–80. https://doi.org/10.15825/1995-1191-2009-3-69-80

    Article  Google Scholar 

  4. Rosa, N., Simoes, R., Magalhães, F.D., and Marques, A.T., From mechanical stimulus to bone formation: a review, Med. Eng. Phys., 2015, vol. 37, no. 8, pp. 719–728. https://doi.org/10.1016/j.medengphy.2015.05.01

    Article  PubMed  Google Scholar 

  5. Riddle, R.C., Taylor, A.F., Genetos, D.C., et al., MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation, Am. J. Physiol.: Cell Physiol., 2006, vol. 290, no. 3, pp. 776–784. https://doi.org/10.1152/ajpcell.00082.2005

    Article  CAS  Google Scholar 

  6. Sikavitsas, V.I., Bancroft, G.N., Holtorf, H.L., et al., Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 25, pp. 14683–14688. https://doi.org/10.1073/pnas.2434367100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Urist, M.R., DeLange, R.J., and Finerman, G.A., Bone cell differentiation and growth factors, Science, 1983, vol. 220, no. 4598, pp. 680–686. https://doi.org/10.1126/science.6403986

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhary, L.R., Hofmeister, A.M., and Hruska, K.A., Differential growth factor control of bone formation through osteoprogenitor differentiation, Bone, 2004, vol. 34, no. 3, pp. 402–411. https://doi.org/10.1016/j.bone.2003.11.014

    Article  CAS  PubMed  Google Scholar 

  9. Shanmugarajan, T.S. and Im, G.I., Osteogenic differentiation of mesenchymal stem cells and bone tissue engineering, Tissue Eng. Regener. Med., 2011, vol. 8, pp. 347–359.

    Google Scholar 

  10. Du, Y., Guo, J.L., Wang, J., Mikos, A.G., and Zhang, Sh., Hierarchically designed bone scaffolds: from internal cues to external stimuli, Biomaterials, 2019, vol. 218, pp. 119334–119354. https://doi.org/10.1016/j.biomaterials.2019.119334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, E.-Ch., Leesungbok, R. Lee, S.-W., Lee, H.-W., Park, S.H. Mah, S.-J., and Ahn, S.-J., Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells, Bioelectromagnetics, 2015, vol. 36, pp. 267–276. https://doi.org/10.1002/bem.21903

    Article  CAS  PubMed  Google Scholar 

  12. Matsumoto, H., Ochi, M., Abiko, Y., Hirose, Y., Kaku, T., and Sakaguchi, K., Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits, Clin. Oral Implants Res., 2000, vol. 11, pp. 354–360. https://doi.org/10.1034/j.1600-0501.2000.011004354.x

    Article  CAS  PubMed  Google Scholar 

  13. Wolff, J., Das Gesetz der Transformation der Knochen, Berlin: Verlag von August Hirschwald. 1892.

    Google Scholar 

  14. Ahn, A.C. and Grodzinsky, A.J., Relevance of collagen piezoelectricity to “Wolff’s Law”: a critical review, Med. Eng. Phys., 2009, vol. 31, pp. 733–741. https://doi.org/10.1016/j.medengphy.2009.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rajabi, A.H., Jaffe, M., and Arinzeh, T.L., Piezoelectric materials for tissue regeneration: a review, Acta Biomater., 2015, vol. 24, pp. 12–23. https://doi.org/10.1016/j.actbio.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  16. Baxter, F.R., Bowen, C.R., Turner, I.G., and Dent, A.C.E., Electrically active bioceramics: a review of interfacial responses, Ann. Biomed. Eng., 2010, vol. 38, no. 6, pp. 2079–2092. https://doi.org/10.1007/s10439-010-9977-6

    Article  CAS  PubMed  Google Scholar 

  17. Weinbaum, S., Cowin, S.C., and Zeng, Y., A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J. Biomech., 1994, vol. 27, no. 3, pp. 339–360. https://doi.org/10.1016/0021-9290(94)90010-8

    Article  CAS  PubMed  Google Scholar 

  18. Riddle, R.C. and Donahue, H.J., From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction, J. Orthop. Res., 2009, vol. 27, no. 2, pp. 143–149. https://doi.org/10.1002/jor.20723

    Article  PubMed  Google Scholar 

  19. Pavalko, F.M., Norvell, S.M., Burr, D.B., et al., A model for mechanotransduction in bone cells: the load-bearing mechanosomes, J. Cell Biochem., 2003, vol. 88, no. 1, pp. 104–112. https://doi.org/10.1002/jcb.10284

    Article  CAS  PubMed  Google Scholar 

  20. Liedert, A., Kaspar, D., Blakytny, R., Claes, L., and Ignatius, A., Signal transduction pathways involved in mechanotransduction in bone cells, Biochem. Biophys. Res. Commun., 2006, vol. 349, no. 1, pp. 1–5. https://doi.org/10.1016/j.bbrc.2006.07.214

    Article  CAS  PubMed  Google Scholar 

  21. Kim, I.S., Song, J.K., Zhang, Y.L., Lee, T.H., et al., Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts, Biochim. Biophys. Acta, Mol. Cell Res., 2006, vol. 1763, pp. 907–916. https://doi.org/10.1016/j.bbamcr.2006.06.007

    Article  CAS  Google Scholar 

  22. Premarket Approval, 1986, Silver Spring, MD: US Food Drug Admin., 1986.

  23. Premarket Approval, 1999, Silver Spring, MD: US Food Drug Admin., 1999.

  24. Zhuang, H., Wang, W., Seldes, R.M., Tahernia, A.D., et al., Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway, Biochem. Biophys. Res. Commun., 1997, vol. 237, pp. 225–229. https://doi.org/10.1006/bbrc.1997.7118

    Article  CAS  PubMed  Google Scholar 

  25. Hartig, M., Joos, U., and Wiesmann, H.-P., Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro, Eur. Biophys. J., 2000, vol. 29, pp. 499–506. https://doi.org/10.1007/s002490000100

    Article  CAS  PubMed  Google Scholar 

  26. Wiesmann, H.-P., Hartig, M., Stratmann, U., et al., Electrical stimulation influences mineral formation of osteoblast-like cells in vitro, Biochim. Biophys. Acta, Mol. Cell Res., 2001, vol. 1538, pp. 28–37. https://doi.org/10.1016/s0167-4889(00)00135-x

    Article  CAS  Google Scholar 

  27. Mycielska, M.E. and Djamgoz, M.B., Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease, J. Cell Sci., 2004, vol. 117, pp. 1631–1639. https://doi.org/10.1242/jcs.01125

    Article  CAS  PubMed  Google Scholar 

  28. Yun, H.-M., Ahn, S.-J., Park, K.-R., et al., Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation, Biomaterials, 2016, vol. 85, pp. 88–98. https://doi.org/10.1016/j.biomaterials.2016.01.035

    Article  CAS  PubMed  Google Scholar 

  29. Santos, L.J., Reis, R.L., and Gomes, M.E., Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering, Trends Biotechnol., 2015, vol. 33, no. 8, pp. 471–479.

    Article  CAS  Google Scholar 

  30. Piezoelectric Nanomaterials for Biomedical Applications, Ciofani, G. and Menciassi, A., Eds., New York: Springer-Verlag, 2012.

    Google Scholar 

  31. Bone Regeneration and Repair: Biology and Clinical Applications, Lieberman, J.R. and Friedlander, G.E., Eds., New York: Springer-Verlag, 2005.

    Google Scholar 

  32. Yasuda, I., Piezoelectric activity of bone, J. Jpn. Orthop. Surg. Soc., 1954, vol. 28, no. 3.

  33. Fukada, E. and Yasuda, I., On the piezoelectric effect of bone, J. Phys. Soc. Jpn., 1957, vol. 12, pp. 1158–1162. https://doi.org/10.1143/JPSJ.12.1158

    Article  Google Scholar 

  34. Fukada, E. and Yasuda, I., Piezoelectric effects in collagen, Part 1, Jpn. J. Appl. Phys., 1964, vol. 3, no. 2, pp. 117–121. https://doi.org/10.1143/JJAP.3.117

    Article  CAS  Google Scholar 

  35. Lang, S.B., Pyroelectric effect in bone and tendon, Nature, 1966, vol. 212, pp. 704–705. https://doi.org/10.1038/212704a0

    Article  Google Scholar 

  36. Minary-Jolandan, M. and Yu, M.-F., Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone, ACS Nano, 2009, vol. 3, pp. 1859–1863. https://doi.org/10.1021/nn900472n

    Article  CAS  PubMed  Google Scholar 

  37. Isupov, V.A., Phase transitions in anhydrous phosphates, vanadates and arsenates of monovalent and bivalent elements, Ferroelectrics, 2002, vol. 274, no. 1, pp. 203–283. https://doi.org/10.1080/00150190213949

    Article  CAS  Google Scholar 

  38. Elliott, J.C., Mackie, E., and Young, R.A., Monoclinic Hydroxyapatite, Science, 1973, vol. 180, pp. 1055–1057. https://doi.org/10.1126/science.180.4090.1055

    Article  CAS  PubMed  Google Scholar 

  39. Tofail, S.A.M., Gandhi, A.A., Gregor, M., and Bauer, J., Electrical properties of hydroxyapatite, Pure Appl. Chem., 2015, vol. 87, no. 3, pp. 221–229. https://doi.org/10.1515/pac-2014-0936

    Article  CAS  Google Scholar 

  40. Lang, S.B., Marino, A.A., Berkovic, G., et al., Piezoelectricity in the human pineal gland, Bioelectrochem. Bioenerg., 1996, vol. 41, pp. 191–195. https://doi.org/10.1016/S0302-4598(96)05147-1

    Article  CAS  Google Scholar 

  41. Tofail, S.A.M., Haverty, D., Stanton, K.T., et al., Structural order and dielectric behaviour of hydroxyapatite, Ferroelectrics, 2005, vol. 319, pp. 117–123. https://doi.org/10.1080/00150190590965523

    Article  CAS  Google Scholar 

  42. Haverty, D., Tofail, S.A.M., Stanton, K.T., et al., Structure and stability of hydroxyapatite: density functional calculation and Rietveld analysis, Phys. Rev. B, 2005, vol. 71, no. 9, art. ID 094103. https://doi.org/10.1103/PhysRevB.71.094103

    Article  CAS  Google Scholar 

  43. Lang, S.B., Tofail, S.A.M., Kholkin, A.L., et al., Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon, Sci. Rep., 2013, vol. 3, no. 2215, pp. 1–6. https://doi.org/10.1038/srep02215

    Article  Google Scholar 

  44. Amis, E.J. and Rumble, J., Certificate of Analysis, SRM 2910: Calcium Hydroxyapatite, Gaithersburg, MD: Natl. Inst. Stand. Technol., 2003.

    Google Scholar 

  45. Bystrov, V.S., Piezoelectricity in the ordered monoclinic hydroxyapatite, Ferroelectrics, 2015, vol. 475, no. 1, pp. 148–153. https://doi.org/10.1080/00150193.2015.995581

    Article  CAS  Google Scholar 

  46. Tofail, S.A.M., Haverty, D., Cox, F., et al., Direct and ultrasonic measurements of macroscopic piezoelectricity in sintered hydroxyapatite, J. Appl. Phys., 2009, vol. 105, art. ID 064103. https://doi.org/10.1063/1.3093863

    Article  CAS  Google Scholar 

  47. Lang, S.B., Tofail, S.A.M., Gandhi, A.A., et al., Pyroelectric, piezoelectric and photoeffects in hydroxyapatite thin films on silicon, App. Phys. Lett., 2011, vol. 98, art. ID 0123703. https://doi.org/10.1063/1.3571294

    Article  CAS  Google Scholar 

  48. Shrout, T. and Zhang, S., Lead-free piezoelectric ceramics: alternatives for PZT?, J. Electroceram., 2007, vol. 19, pp. 113–126. https://doi.org/10.1007/s10832-007-9047-0

    Article  CAS  Google Scholar 

  49. Berlincourt, D. and Jaffe, H., Elastic and piezoelectric coefficients of single-crystal barium titanate, Phys. Rev., 1958, vol. 111, pp. 143–148. https://doi.org/10.1103/PhysRev.111.143

    Article  CAS  Google Scholar 

  50. Sharma, P., Wu, D., Poddar, S., Reece, T.J., et al., Orientational imaging in polar polymers by piezoresponse force microscopy, J. Appl. Phys., 2011, vol. 110, art. ID 052010 https://doi.org/10.1063/1.3623765

    Article  CAS  Google Scholar 

  51. Minary-Jolandan, M. and Yu, M.-F., Shear piezoelectricity in bone at the nanoscale, Appl. Phys. Lett., 2010, vol. 97, art. ID 153127. https://doi.org/10.1063/1.3503965

    Article  CAS  Google Scholar 

  52. Pienkowski, D. and Pollack, S.R., The origin of stress-generated potentials in fluid-saturated bone, J. Orthop. Res., 1983, vol. 1, no. 1, pp. 30–41. https://doi.org/10.1002/jor.1100010105

    Article  CAS  PubMed  Google Scholar 

  53. Gross, D. and Williams, W.S., Streaming potential and the electromechanical response of physiologically-moist bone, J. Biomech., 1982, vol. 15, pp. 277–295. https://doi.org/10.1016/0021-9290(82)90174-9

    Article  CAS  PubMed  Google Scholar 

  54. Tandon, B., Blaker, J.J., and Cartmell, S.H., Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair, Acta Biomater., 2018, vol. 73, pp. 1–20. https://doi.org/10.1016/j.actbio.2018.04.026

    Article  CAS  PubMed  Google Scholar 

  55. Yu, S.-W., Kuo, S.-T., Tuan, W.-H., et al., Cytotoxicity and degradation behavior of potassium sodium niobate piezoelectric ceramics, Ceram. Int., 2012, vol. 38, pp. 2845–2850. https://doi.org/10.1016/j.ceramint.2011.11.056

    Article  CAS  Google Scholar 

  56. Christman, J.A., Woolcott, R.R., Kingon, A.I., and Nemanich, R.J., Piezoelectric measurements with atomic force microscopy, Appl. Phys. Lett., 1998, vol. 73, pp. 3851–3853. https://doi.org/10.1063/1.122914

    Article  CAS  Google Scholar 

  57. Ying, C. and Jim, S.W., Synthesis of boron nitride nanotubes using ball milling and annealing method, in Nanoengineering of Structural, Functional and Smart Materials, Boca Raton, FL: CRC Press, 2005, chap. 7. https://doi.org/10.1201/9780203491966.ch7

    Book  Google Scholar 

  58. Feng, J., Yuan, H., and Zhang, X., Promotion of osteogenesis by a piezoelectric biological ceramic, Biomaterials, 1997, vol. 18, no. 23, pp. 1531–1534.

    Article  CAS  Google Scholar 

  59. Nakamura, S., Kobayashi, T., Nakamura, M., and Yamashita, K., Enhanced in vivo responses of osteoblasts in electrostatically activated zones by hydroxyapatite electrets, J. Mater. Sci. Mater. Med., 2009, vol. 20, no. 1, pp. 99–103. https://doi.org/10.1007/s10856-008-3546-7

    Article  CAS  PubMed  Google Scholar 

  60. Itoh, S., Nakamura, S., Nakamura, M., Shinomiya, K., and Yamashita, K., Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization, Biomaterials, 2006, vol. 27, no. 32, pp. 5572–5579. https://doi.org/10.1016/j.biomaterials.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  61. Damaraju, S.M., Wu, S., Jaffe, M., and Arinzeh, T.L., Structural changes in PVDF fibers due to electrospinning and its effect on biological function, Biomed. Mater., 2013, vol. 8, art. ID 045007. https://doi.org/10.1088/1748-6041/8/4/045007

    Article  CAS  PubMed  Google Scholar 

  62. Ochiai, T. and Fukada, E., Electromechanical properties of poly-L-lactic acid, Jpn. J. Appl. Phys., 1998, vol. 37, art. ID 3374. https://doi.org/10.1143/JJAP.37.3374

    Article  CAS  Google Scholar 

  63. Gimenes, R., Zaghete, M.A., Bertolini, M., et al., Composites PVDF–TrFE/BT used as bioactive membranes for enhancing bone regeneration, Proc. SPIE, 2004, vol. 5383. https://doi.org/10.1117/12.548647

  64. Tang, Y., Wu, C., Wu, Z., et al., Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration, Sci. Rep., 2017, vol. 27, no. 7, art. ID 43360. https://doi.org/10.1038/srep43360

    Article  Google Scholar 

  65. Liu, B., Chen, L., Shao, Ch., et al., Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO3 composites with aligned lamellar porous structure, Mater. Sci. Eng., C, 2016, vol. 61, pp. 8–14. https://doi.org/10.1016/j.msec.2015.12.009

    Article  CAS  Google Scholar 

  66. Kon, E., Filardo, G., Perdisa, F., et al., Clinical results of multilayered biomaterials for osteochondral regeneration, J. Exp. Orthop., 2014, vol. 1, no. 10. https://doi.org/10.1186/s40634-014-0010-0

  67. More, N. and Kapusetti, G., Piezoelectric material—A promising approach for bone and cartilage regeneration, Med. Hypotheses, 2017, vol. 108, pp. 10–16. https://doi.org/10.1016/j.mehy.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  68. Ciofani, G., Ricotti, L., Menciassi, A., et al., Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation, Biomed. Microdevices, 2011, vol. 13, pp. 255–266. https://doi.org/10.1007/s10544-010-9490-6

    Article  CAS  PubMed  Google Scholar 

  69. Lee, S.K. and Wolfe, S.W., Peripheral nerve injury and repair, J. Am. Acad. Orthop. Surg., 2000, vol. 8, no. 2, pp. 243–252. https://doi.org/10.5435/00124635-200007000-00005

    Article  CAS  PubMed  Google Scholar 

  70. Seil, J.T. and Webster, T.J., Electrically active nanomaterials as improved neural tissue regeneration scaffolds, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2010, vol. 2, no. 6, pp. 635–647. https://doi.org/10.1002/wnan.109

    Article  CAS  Google Scholar 

  71. Lee, Y.-S., Collins, G., and Arinzeh, T.L., Neurite extension of primary neurons on electrospun piezoelectric scaffolds, Acta Biomater., 2011, vol. 7, no. 11, pp. 3877–3886. https://doi.org/10.1016/j.actbio.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  72. Lee, Y.-S. and Arinzeh, T.L., The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells, Tissue Eng., Part A, 2012, vol. 18, nos. 19–20, pp. 2063–2072. https://doi.org/10.1089/ten.TEA.2011.0540

    Article  CAS  Google Scholar 

  73. Wang, J.X., Sun, X.W., Wei, A., et al., Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett., 2006, vol. 88, no. 23, art. ID 233106. https://doi.org/10.1063/1.2210078

    Article  CAS  Google Scholar 

  74. Sirelkhatim, A., Mahmud, S., Seeni, A., et al., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Lett., 2015, vol. 7, no. 3, pp. 219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  75. Hanley, C., Layne, J., Punnoose, A., et al., Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles, Nanotechnology, 2008, vol. 19, no. 29. https://doi.org/10.1088/0957-4484/19/29/295103

  76. Ostrovsky, S., Kazimirsky, G., Gedanken, A., and Brodie, C., Selective cytotoxic effect of ZnO nanoparticles on glioma cells, Nano Res., 2009, vol. 2, no. 11, pp. 882–890. https://doi.org/10.1007/s12274-009-9089-5

    Article  CAS  Google Scholar 

  77. Ciofani, G., Potential applications of boron nitride nanotubes as drug delivery systems, Expert Opin. Drug Delivery, 2010, vol. 7, no. 8, pp. 889–893. https://doi.org/10.1517/17425247.2010.499897

    Article  CAS  Google Scholar 

  78. Matar, O., Posada, O.M., Hondow, N.S., et al., Barium titanate nanoparticles for biomarker applications, J. Phys.: Conf. Ser., 2015, vol. 644. https://doi.org/10.1088/1742-6596/644/1/012037

  79. Ren, L., Yu, K., and Tan, Y., Applications and advances of magnetoelastic sensors in biomedical engineering: a review, Materials, 2019, vol. 12, no. 1135. https://doi.org/10.3390/ma12071135

  80. Belov, K.P., Magnitostriktsionnye yavleniya i ikh tekhnicheskie prilozheniya (Magnetostrictive Phenomena and Its Technical Applications), Moscow: Nauka, 1987.

  81. Verhoeven, J.D., Ostenson, J.E., Gibson, E.D., and McMasters, O.D., The effect of composition and magnetic heat treatment on the magnetostriction of TbxDy1–xFey twinned single crystals, J. Appl. Phys., 1989, vol. 66, no. 2, pp. 772–779. https://doi.org/10.1063/1.343496

    Article  CAS  Google Scholar 

  82. Bone Regeneration and Repair: Biology and Clinical Applications, Lieberman, J.R. and Friedlaender, G.E., Eds., New York: Springer-Verlag, 2005.

    Google Scholar 

  83. Korzh, A.A., Reparativnaya regeneratsiya kosti (Reparative Regeneration of a Bone), Moscow: Meditsina, 1972.

  84. Klosterhoff, B.S., Tsang, M., She, D., et al., Implantable sensors for regenerative medicine, J. Biomech. Eng., 2017, vol. 139, no. 021009-1 https://doi.org/10.1115/1.4035436

  85. Karipott, S.S., Nelson, B.D., Guldberg, R.E., and Ong, K.G., Clinical potential of implantable wireless sensors for orthopedic treatments, Expert Rev. Med. Devices, 2018, vol. 15, no. 4, pp. 255–264. https://doi.org/10.1080/17434440.2018.1454310

    Article  CAS  PubMed  Google Scholar 

  86. Ren, L., Yu, K., and Tan, Y., Applications and advances of magnetoelastic sensors in biomedical engineering: a review, Materials, 2019, vol. 12, no. 1135. https://doi.org/10.3390/ma12071135

  87. Puckett, L.G., Barrett, G., Kouzoudis, D., et al., Monitoring blood coagulation with magnetoelastic sensors, Biosens. Bioelectron., 2003, vol. 18, nos. 5–6, pp. 675–681. https://doi.org/10.1016/S0956-5663(03)00033-2

    Article  CAS  PubMed  Google Scholar 

  88. Grimes, C., Mungle, C., Zeng, K., et al., Wireless magnetoelastic resonance sensors: a critical review, Sensors, 2002, vol. 2, no. 7, pp. 294–313. https://doi.org/10.3390/s20700294

    Article  CAS  Google Scholar 

  89. Klosterhoff, B.S., Ong, K.G., Krishnan, L., et al., Wireless implantable sensor for non-invasive, longitudinal quantification of axial strain across rodent long bone defects, J. Biomech. Eng., 2017, vol. 139, pp. 1110041–1110048. https://doi.org/10.1115/1.4037937

    Article  PubMed Central  Google Scholar 

  90. Green, S.R., Kwon, R.S., Elta, G.H., and Gianchandani, Y.B., In vivo and in situ evaluation of a wireless magnetoelastic sensor array for plastic biliary stent monitoring, Biomed. Microdevices, 2013, vol. 15, no. 3, pp. 509–517. https://doi.org/10.1007/s10544-013-9750-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. DeRouin, A., Pacella, N., Zhao, C., et al., A wireless sensor for real-time monitoring of tensile force on sutured wound sites, IEEE Trans. Biomed. Eng., 2015, vol. 63, no. 8, pp. 1665–1671. https://doi.org/10.1109/TBME.2015.2470248

    Article  PubMed  Google Scholar 

  92. Ren, L., Yu, K., and Tan, Y., Monitoring and assessing the degradation rate of magnesium-based artificial bone in vitro using a wireless magnetoelastic sensor, Sensors, 2018, vol. 18, no. 3066. https://doi.org/10.3390/s18093066

  93. Luo, Y. and Hutapea, P., Stress-strain behavior of a smart magnetostrictive actuator for a bone transport device, J. Med. Devices, 2008, vol. 2, art. ID 041002. https://doi.org/10.1115/1.2997331

    Article  Google Scholar 

  94. Gong, X., Peng, S., Wen, W., et al., Design and fabrication of magnetically functionalised core/shell microspheres for smart drug delivery, Adv. Funct. Mater., 2009, vol. 19, no. 2, pp. 292-297. https://doi.org/10.1002/adfm.200801315

    Article  CAS  Google Scholar 

  95. Barbosa, J., Correia, D.M., Gonçalves, R., et al., Magnetically controlled drug release system through magneto-mechanical actuation, Adv. Healthcare Mater., 2016, vol. 5, no. 23, pp. 3027–3034. https://doi.org/10.1002/adhm.201600591

    Article  CAS  Google Scholar 

  96. Busslinger, A., Lampe, K., Beuchat, M., and Lehmann, B., A comparative in vitro study of a magnetostrictive and a piezoelectric ultrasonic scaling instrument, J. Clin. Periodontol., 2001, vol. 28, no. 7, pp. 642–649. https://doi.org/10.1034/j.1600-051x.2001.028007642.x

    Article  CAS  PubMed  Google Scholar 

  97. Brisken, A.F., US Patent 6221038B1, 1996.

  98. Fukuda, T., Hosokai, H., Ohyama, H., et al., Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables, Proc. IEEE Int. Conf. on Micro Electro Mechanical Systems, Piscataway, NJ: Inst. Electr. Electron. Eng., 1991, pp. 210–215. https://doi.org/10.1109/MEMSYS.1991.114798

  99. Pyatakov, A.P. and Zvezdin, A.K., Magnetoelectric and multiferroic media, Phys.-Usp., 2012, vol. 55, no. 6, pp. 557–581. https://doi.org/10.3367/UFNe.0182.201206b.0593

    Article  CAS  Google Scholar 

  100. Fiebig, M., Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys., 2005, vol. 38, pp. R123–R152. https://doi.org/10.1088/0022-3727/38/8/R01

    Article  CAS  Google Scholar 

  101. Teague, J.R., Gerson, R., and James, W., Dielectric hysteresis in single crystal BiFeO3, Solid State Commun., 1970, vol. 8, pp. 1073–1074. https://doi.org/10.1016/0038-1098(70)90262-0

    Article  CAS  Google Scholar 

  102. Tehranchi, M.M., Kubrakov, N.F., and Zvezdin, A.K., Spin-flop and incommensurate structures in magnetic ferroelectrics, Ferroelectics, 1997, vol. 204, no. 1, pp. 181–188. https://doi.org/10.1080/00150199708222198

    Article  CAS  Google Scholar 

  103. Prashanthi, K., Mandal, M., Duttagupta, S.P., et al., Fabrication and characterization of a novel magnetoelectric multiferroic MEMS cantilevers on Si, Sens. Actuators, A, 2011, vol. 166, no. 1, pp. 83–87. https://doi.org/10.1016/j.sna.2010.12.013

    Article  CAS  Google Scholar 

  104. Troyanchuk, I.O., Bushinsky, M.V., Tereshko, N.V., and Kovetskaya, M.I., Conditions favoring the polar weak ferromagnetic state in BiFeO3-type multiferroics, JETP Lett., 2011, vol. 93, no. 9, pp. 512–516. https://doi.org/10.1134/S0021364011090141

    Article  CAS  Google Scholar 

  105. Mukhortov, V.M., Golovko, Yu.I., and Yuzyuk, Yu.I., Heteroepitaxial flms of a bismuth ferrite multiferroic doped with neodymium, Phys.-Usp., 2009, vol. 52, no. 8, pp. 856–860. https://doi.org/10.3367/UFNe.0179.200908k.0909

    Article  CAS  Google Scholar 

  106. Fetisov, Y.K. and Srinivasan, G., Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator, Appl. Phys. Lett., 2006, vol. 88, no. 14, art. ID 143503. https://doi.org/10.1063/1.2191950

    Article  CAS  Google Scholar 

  107. Martins, P., Lasheras, A., Gutierrez, J., et al., Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF–TrFE) nanocomposites, J. Phys. D: Appl. Phys., 2011, vol. 44, no. 49, art. ID 495303. https://doi.org/10.1088/0022-3727/44/49/495303

    Article  CAS  Google Scholar 

  108. Harshe, G., Dougherty, J.O., and Newnham, R.E., Theoretical modeling of multilayer magnetoelectric composites, Int. J. Appl. Electromagn. Mater., 1993, vol. 4, pp. 145–160.

    Google Scholar 

  109. Bichurin, M.I., Petrov, V.M., and Srinivasan, G., Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites, J. Appl. Phys., 2002, vol. 92, no. 12, pp. 7681–7683. https://doi.org/10.1063/1.1522834

    Article  CAS  Google Scholar 

  110. Zhou, Y. and Shin, F.G., Magnetoelectric effect of mildly conducting magnetostrictive/piezoelectric particulate composites, J. Appl. Phys., 2006, vol. 100, no. 4, art. ID 043910. doi 1063/1.2245194

  111. Wong, C.K. and Shin, F.G., Effect of inclusion deformation on the magnetoelectric effect of particulate magnetostrictive/piezoelectric composites, J. Appl. Phys., 2007, vol. 102, art. ID 063908. https://doi.org/10.1063/1.2781513

    Article  CAS  Google Scholar 

  112. Jin, J., Lu, S.-G., Chanthad, C., et al., Multiferroic polymer composites with greatly enhanced magnetoelectric effect under a low magnetic bias, Adv. Mater., 2011, vol. 23, no. 33, pp. 3853–3858. https://doi.org/10.1002/adma.201101790

    Article  CAS  PubMed  Google Scholar 

  113. Palneedi, H., Annapureddy, V., Priya, S., and Ryu, J., Status and perspectives of multiferroic magnetoelectric composite materials and applications, Actuators, 2016, vol. 5, no. 1, p. 9. https://doi.org/10.3390/act5010009

    Article  Google Scholar 

  114. Martins, P. and Lanceros-Méndez, S., Polymer-based magnetoelectric materials, Adv. Funct. Mater., 2013, vol. 23, no. 27, pp. 3371–3385. https://doi.org/10.1002/adfm.201202780

    Article  CAS  Google Scholar 

  115. Khatua, C., Bhattacharya, D., Kundu, B., et al., Multiferroic reinforced bioactive glass composites for bone tissue engineering applications, Adv. Eng. Mater., 2018, vol. 20, no. 12, art. ID 1800329. https://doi.org/10.1002/adem.201800329

    Article  CAS  Google Scholar 

  116. Khatua, C., Bodhak, S., Kundu, B., and Balla, V.K., In vitro bioactivity and bone mineralization of Bismuth Ferrite reinforced bioactive glass composites, Materialia, 2018, vol. 4, pp. 361–366. https://doi.org/10.1016/j.mtla.2018.10.014

    Article  Google Scholar 

  117. Khatua, C., Sengupta, S., Kundu, B., et al., Enhanced strength, in vitro bone cell differentiation and mineralization of injectable bone cement reinforced with multiferroic particles, Mater. Des., 2019, vol. 167, art. ID 107628. https://doi.org/10.1016/j.matdes.2019.107628

    Article  CAS  Google Scholar 

  118. Ribeiro, C., Correia, V., Martins, P., et al., Proving the suitability of magnetoelectric stimuli for tissue engineering applications, Colloids Surf., B, 2016, vol. 140, pp. 430–436. https://doi.org/10.1016/j.colsurfb.2015.12.055

    Article  CAS  Google Scholar 

  119. Hermenegildo, B., Ribeiro, C., Pérez-Álvarez, L., et al., Hydrogel-based magnetoelectric microenvironments for tissue stimulation, Colloids Surf., B, 2019, vol. 181, pp. 1041–1047. https://doi.org/10.1016/j.colsurfb.2019.06.023

    Article  CAS  Google Scholar 

  120. Fernandes, M., Correia, D.M., Ribeiro, C., et al., Bioinspired three-dimensional magneto-active scaffolds for bone tissue engineering, ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 48, pp. 45265–45275. https://doi.org/10.1021/acsami.9b14001

    Article  CAS  PubMed  Google Scholar 

  121. Mushtaq, F., Torlakcik, H., Vallmajo-Martin, Q., et al., Magnetoelectric 3D scaffolds for enhanced bone cell proliferation, Mater. Today, 2019, vol. 16, pp. 290–300. https://doi.org/10.1016/j.apmt.2019.06.004

    Article  Google Scholar 

  122. Tang, B., Zhuang, J., Wang, L., et al., Harnessing cell dynamic responses on magnetoelectric nanocomposite films to promote osteogenic differentiation, ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 9, pp. 7841–7851. https://doi.org/10.1021/acsami.7b19385

    Article  CAS  PubMed  Google Scholar 

  123. Gil, S. and Mano, J.F., Magnetic composite biomaterials for tissue engineering, Biomater. Sci., 2014, vol. 2, pp. 812–818. https://doi.org/10.1039/C4BM00041B

    Article  CAS  PubMed  Google Scholar 

  124. Sensenig, R., Sapir, Y., MacDonald, C., et al., Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo, Nanomedicine, 2012, vol. 7, no. 9, pp. 1425–1442. https://doi.org/10.2217/nnm.12.109

    Article  CAS  PubMed  Google Scholar 

  125. Kaushik, A., Jayant, R.D., Sagar, V., and Nair, M., The potential of magneto-electric nanocarriers for drug delivery, Expert Opin. Drug Delivery, 2014, vol. 11, no. 10, pp. 1635–1646. https://doi.org/10.1517/17425247.2014.933803

    Article  CAS  Google Scholar 

  126. Kargol, A., Malkinski, L., and Caruntu, G., Biomedical applications of multiferroic nanoparticles, in Advanced Magnetic Materials, Malkinski, L., Ed., London: InTech, 2012, pp. 89–118. https://doi.org/10.5772/39100

    Book  Google Scholar 

  127. Reermann, J., Durdaut, P., Salzer, S., et al., Evaluation of magnetoelectric sensor systems for cardiological applications, Measurement, 2018, vol. 116, pp. 230–238. https://doi.org/10.1016/j.measurement.2017.09.047

    Article  Google Scholar 

  128. Jahns, R., Knochel, R., Greve, H., et al., Magnetoelectric sensors for biomagnetic measurements, Proc. IEEE Int. Symp. on Medical Measurements and Applications (MeMeA), May 30–31, 2011, Piscataway, NJ: Inst. Electr. Electron. Eng., 2011, art. ID 12138230. https://doi.org/10.1109/memea.2011.5966676

  129. Rupp, T., Truong, B.D., Williams, S., and Roundy, S., Magnetoelectric transducer designs for use as wireless power receivers in wearable and implantable applications, Materials, 2019, vol. 12, no. 3. https://doi.org/10.3390/ma12030512

  130. Rizzo, G., Loyau, V., Nocua, R., et al., Potentiality of magnetoelectric composites for wireless power transmission in medical implants, Proc. 13th Int. Symp. on Medical Information and Communication Technology (ISMICT 2019), May 8–10, 2019, Piscataway, NJ: Inst. Electr. Electron. Eng., 2019. https://doi.org/10.1109/ISMICT.2019.8743873

  131. Hu, Y., Bai, Y., and Yang, X., An electrophysiological study on the promoting effects of transcranial magnetoelectric stimulation to peripheral nerve regeneration after injuries, Chin. J. Rehabil., 2001, vol. 4, pp. 216–217.

    Google Scholar 

  132. Esmaeili, E., Soleimani, M., Ghiass, M.A., et al., Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells, J. Cell. Physiol., 2019, vol. 234, no. 8, pp. 13617–13628. https://doi.org/10.1002/jcp.28040

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This review was prepared within the framework of research supported by the Russian Science Foundation, project no. 19-19-00587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Putlyaev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonova, S.A., Evdokimov, P.V., Filippov, Y.Y. et al. Electro- and Magnetoactive Materials in Medicine: A Review of Existing and Potential Areas of Application. Inorg Mater 56, 1319–1337 (2020). https://doi.org/10.1134/S0020168520130038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520130038

Keywords:

Navigation