Skip to main content
Log in

tert-Butoxychloromethylphenylsilane: synthesis and reactivity

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of dichloromethylphenylsilane with tert-butanol in the presence of a hydrogen chloride acceptor gave tert-butoxychloromethylphenylsilane. The product is stable at room temperature for a week, undergoing disproportionation upon more prolonged storage. Its reaction with 2-substituted ethanols XCH2CH2OH (X = Cl, MeNH, PhCH2N, PhN) in the presence of bases gives the corresponding polyfunctional silanes MePhSi(OBut)(OCH2CH2X). Alkylation of such N-substituted derivatives with (chloromethyl)triethoxysilane results in polyfunctional α-silyl amines MePhSi(OBut)OCH2CH2N(R)CH2Si(OEt)3 (R = Me, Bn). The structures of all synthesized compounds were confirmed by IR and multinuclear NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev., 1995, 95, 1409; DOI: https://doi.org/10.1021/cr00037a012.

    Article  CAS  Google Scholar 

  2. Silicon Based Polymers, Eds F. Ganachaud, S. Boileau, B. Boury, Springer Science-Business Media B.V., 2008, 298 p.

  3. S. J. Clarson, J. J. Fitzgerald, M. J. Owen, S. D. Smith, Silicones and Silicone-Modified Materials, ACS Symposium series, Washington, DC, 2000, Vol. 729, 607 p.

  4. R. Drake, I. MacKinnon, R. Taylor, Recent advances in the chemistry of siloxane polymers and copolymers, in The Chemistry of Organic Silicon Compounds, Ed. Y. Apeloig, Z. Rappoport, Wiley, Hoboken, 2003, 2217 pp.

  5. D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev., 2010, 110, 2081; DOI: https://doi.org/10.1021/cr900201r.

    Article  CAS  Google Scholar 

  6. L.-W. Xu, L. Li, Z.-H. Shia, Adv. Synth. Catal., 2010, 352, 243; DOI: https://doi.org/10.1002/adsc.200900797.

    Article  CAS  Google Scholar 

  7. A. D. Dilman, S. L. Ioffe, Chem. Rev., 2003, 103, 733; DOI: https://doi.org/10.1021/cr020003p.

    Article  CAS  Google Scholar 

  8. L. G. Lutz, Chem. Eur. J., 2018, 24, 17881; DOI: https://doi.org/10.1002/chem.201802698.

    Article  Google Scholar 

  9. K. Ando, T. Wada, M. Okumura, H. Sumida, Org. Lett., 2015, 17, 6026; DOI: https://doi.org/10.1021/acs.orglett.5b03008.

    Article  CAS  Google Scholar 

  10. D. J. Trader, E. E. Carlson, Org. Lett., 2011, 13, 5652; DOI: https://doi.org/10.1021/o1202376m.

    Article  CAS  Google Scholar 

  11. S. Kojima, T. Fukuzaki, A. Yamakawa, Y. Murai, Org. Lett., 2004, 6, 3917; DOI: https://doi.org/10.1021/o10486728.

    Article  CAS  Google Scholar 

  12. G. L. Fondong, E. Y. Njua, A. Steiner, C. F. Campana, L. Stahl, Polyhedron, 2011, 30 2856; DOI: https://doi.org/10.1016/j.poly.2011.08.011.

    Article  CAS  Google Scholar 

  13. V. D. Sheludyakov, V. I. Zhun, M. K. Ten, Russ. J. Gen. Chem., 1987, 57, 567.

    CAS  Google Scholar 

  14. H. Hildebrandt, B. Engels, Z. Anorg. Allg. Chem., 2000, 626, 2, 400; DOI: https://doi.org/10.1002/(SICI)1521-3749(200002)626:2<400:AID-ZAAC400>3.0.CO;2-5.

    Article  Google Scholar 

  15. J. I. Schweizer, L. Meyer, A. Nadj, M. Diefenbach, M. C. Holthausen, Chem. Eur. J., 2016, 22, 14328; DOI: https://doi.org/10.1002/chem.201602724.

    Article  CAS  Google Scholar 

  16. E. A. Chernyshev, N. G. Komalenkova, A. A. Tagachenkov, V. G. Bykovchenko, Russ. J. Gen. Chem., 1995, 65, 281.

    CAS  Google Scholar 

  17. A. M. Varvarin, L. A. Belyakova, Russ. J. Gen. Chem., 1994, 64, 1771.

    CAS  Google Scholar 

  18. A. Kawachi, K. Tamao, Organometallics, 1996, 15, 4653; DOI: https://doi.org/10.1021/om960421i.

    Article  CAS  Google Scholar 

  19. T. C. Efthymiou, J.-P. Desaulniers, J. Heterocyclic Chem., 2011, 48, 533; DOI: https://doi.org/10.1002/jhet.532.

    Article  CAS  Google Scholar 

  20. P. Ortega, J. F. Bermejo, L. Chonco, E. de Jesus, F. J. de la Mata, G. Fernández, J. C. Flores, R. Gómez, M. J. Serramía, M. A. Muñoz-Fernandez, Eur. J. Inorg. Chem., 2006, 1388; DOI: https://doi.org/10.1002/ejic.200500782.

  21. C. H. Kim, M. E. Lee, D. H. Pae, Organometallics, 1987, 6, 2, 423; DOI: https://doi.org/10.1021/om00145a031.

    Article  Google Scholar 

  22. A. Iwata, H. Tang, A. Kunai, J. Ohshita, Y. Yamamoto, C. Matui, J. Org. Chem., 2002, 67, 5170; DOI: https://doi.org/10.1021/jo020019f.

    Article  CAS  Google Scholar 

  23. F. Bertasi, E. Negro, K. Vezzu, V. D. Noto, Int. J. Hydrogen Energy, 2014, 39, 2896; DOI: https://doi.org/10.1016/j.ijhydene.2013.08.005.

    Article  CAS  Google Scholar 

  24. S. H. Zeisel, Ann. Nutr. Metab., 2012, 61, 3, 254; DOI: https://doi.org/10.1159/000343120.

    Article  Google Scholar 

  25. S. N. Adamovich, R. G. Mirskov, A. N. Mirskova, M. G. Voronkov, Russ. Chem. Bull., 2012, 61, 1262; DOI: https://doi.org/10.1007/s11172-012-0173-8.

    Article  CAS  Google Scholar 

  26. A. Zablotskaya, I. Segal, Yu. Popelis, E. Lukevics, S. Baluja, I. Shestakova, I. Domracheva, Appl. Organomet. Chem., 2006, 20, 721; DOI: https://doi.org/10.1002/aoc.1133.

    Article  CAS  Google Scholar 

  27. A. Zablotskaya, I. Segal, Yu. Popelis, S. Grinberga, I. Shestakova, V. Nikolajeva, D. Eze, Appl. Organomet. Chem., 2013, 27, 114; DOI: https://doi.org/10.1002/aoc.2952.

    Article  CAS  Google Scholar 

  28. I. Segal, A. Zablotskaya, E. Lukevics, Chem. Heterocycl. Compd., 2005, 41, 613; DOI: https://doi.org/10.1007/s10593-005-0192-6.

    Article  CAS  Google Scholar 

  29. J. Sanchez-Nieves, A. J. Perise-Barrios, P. Ortega, A. L. Corbı, A. Domınguez-Soto, M. A. Munoz-Fernandez, R. Gomez, F. J. de la Mata, RSC Adv., 2013, 3, 23445; DOI: https://doi.org/10.1039/C3RA43338B.

    Article  CAS  Google Scholar 

  30. A. Zablotskaya, I. Segal, M. Maiorov, D. Zablotsky, A. Mishnev, E. Lukevics, I. Shestakova, I. Domracheva, J. Magnetism Magnetic Materials, 2007, 311, 135; DOI: https://doi.org/10.1016/j.jmmm.2006.11.176.

    Article  CAS  Google Scholar 

  31. Pass Online; http://www.pharmaexpert.ru/PASSOnline.

  32. D. B. G. Williams, M. Lawton, J. Org. Chem., 2010, 75, 8351; DOI: https://doi.org/10.1021/jo101589h.

    Article  CAS  Google Scholar 

  33. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th ed., Elsevier, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Lazareva.

Additional information

The work was carried out using analytical equipment of the Baikal Center for Collective use of the Siberian Branch of the Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatenko, A.S., Lazareva, N.F. tert-Butoxychloromethylphenylsilane: synthesis and reactivity. Russ Chem Bull 69, 2340–2344 (2020). https://doi.org/10.1007/s11172-020-3033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-3033-y

Key words

Navigation