Skip to main content
Log in

Nitromethane as a reagent for the synthesis of 3-nitroindoles from 2-haloarylamine derivatives

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new approach to the synthesis of 3-nitroindoles using palladium-catalyzed arylation of nitromethane with N-(2-bromoaryl)imidates was developed. A convenient and rapid method for cyclization of ethyl N-(2-nitromethylaryl)acetimidates to 2-methyl-3-nitro-1H-indoles was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baeyer, Ann. Chem. Pharm., 1866, 140, 295; DOI: https://doi.org/10.1002/jlac.18661400306.

    Article  Google Scholar 

  2. E. Fischer, F. Jourdan, Ber. Dtsch. Chem. Ges., 1883, 16, 2241; DOI: https://doi.org/10.1002/cber.188301602141.

    Article  Google Scholar 

  3. R. J. Sundberg, A. R. Katritzky, O. Meth-Cohn, C. S. Rees, Indoles, Elsevier Science, 1996.

  4. G. W. Gribble, Indole Ring Synthesis: From Natural Products to Drug Discovery, Wiley, 2016.

  5. G. R. Humphrey, J. T. Kuethe, Chem. Rev., 2006, 106, 2875; DOI: https://doi.org/10.1021/cr0505270.

    Article  CAS  PubMed  Google Scholar 

  6. S. Cacchi, G. Fabrizi, Chem. Rev., 2005, 105, 2873; DOI: https://doi.org/10.1021/cr040639b.

    Article  CAS  PubMed  Google Scholar 

  7. D. I. Bugaenko, A. V. Karchava, M. A. Yurovskaya, Russ. Chem. Rev., 2019, 88, 99; DOI: https://doi.org/10.1070/rcr4844.

    Article  CAS  Google Scholar 

  8. V. V. Pelipko, R. I. Baichurin, S. V. Makarenko, Russ. Chem. Bull., 2019, 68, 1821; DOI: https://doi.org/10.1007/s11172-019-2631-z.

    Article  CAS  Google Scholar 

  9. D. A. Tatarinov, V. I. Osipova, A. V. Bogdanov, R. R. Fayzullin, V. F. Mironov, Mendeleev Commun., 2018, 28, 292; DOI: https://doi.org/10.1016/j.mencom.2018.05.021.

    Article  CAS  Google Scholar 

  10. M. D. Dutov, V. V. Kachala, B. I. Ugrak, V. A. Korolev, S. V. Popkov, D. R. Aleksanyan, O. N. Rusina, K. G. Aleksanyan, V. N. Koshelev, Mendeleev Commun., 2018, 28, 437; DOI: https://doi.org/10.1016/j.mencom.2018.07.033.

    Article  CAS  Google Scholar 

  11. L. A. Sviridova, P. S. Protopopova, M. G. Akimov, M. S. Dudina, E. K. Melnikova, K. A. Kochetkov, Mendeleev Commun., 2020, 30, 347; DOI: https://doi.org/10.1016/j.mencom.2020.05.029.

    Article  CAS  Google Scholar 

  12. N. Netz, T. Opatz, Mar. Drugs, 2015, 13, 4814; DOI: https://doi.org/10.3390/md13084814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Chadha, O. Silakari, Eur. J. Med. Chem., 2017, 134, 159; DOI: https://doi.org/10.1016/j.ejmech.2017.04.003.

    Article  CAS  PubMed  Google Scholar 

  14. M.-Z. Zhang, Q. Chen, G.-F. Yang, Eur. J. Med. Chem., 2015, 89, 421; DOI: https://doi.org/10.1016/j.ejmech.2014.10.065.

    Article  CAS  PubMed  Google Scholar 

  15. A. A. Festa, L. G. Voskressensky, E. V. Van der Eycken, Chem. Soc. Rev., 2019, 48, 4401; DOI: https://doi.org/10.1039/C8CS00790J.

    Article  CAS  PubMed  Google Scholar 

  16. A. S. Aldoshin, A. A. Tabolin, S. L. Ioffe, V. G. Nenajdenko, Eur. J. Org. Chem., 2019, 2019, 4384; DOI: https://doi.org/10.1002/ejoc.201900573.

    Article  CAS  Google Scholar 

  17. D. I. Bugaenko, A. A. Dubrovina, M. A. Yurovskaya, A. V. Karchava, Org. Lett., 2018, 20, 7358; DOI: https://doi.org/10.1021/acs.orglett.8b02784.

    Article  CAS  PubMed  Google Scholar 

  18. P. S. Gribanov, G. A. Chesnokov, P. B. Dzhevakov, N. Y. Kirilenko, S. A. Rzhevskiy, A. A. Ageshina, M. A. Topchiy, M. V. Bermeshev, A. F. Asachenko, M. S. Nechaev, Mendeleev Commun., 2019, 29, 147; DOI: https://doi.org/10.1016/j.mencom.2019.03.009.

    Article  CAS  Google Scholar 

  19. A. Shoberu, C. K. Li, Z. K. Tao, G. Y. Zhang, J. P. Zou, Adv. Synth. Catal., 2019, 361, 2255; DOI: https://doi.org/10.1002/adsc.201900070.

    Article  CAS  Google Scholar 

  20. W. Al-Zereini, I. Schuhmann, H. Laatsch, E. Helmke, H. Anke, J. Antibiotics, 2007, 60, 301; DOI: https://doi.org/10.1038/ja.2007.38.

    Article  CAS  Google Scholar 

  21. J. Tang, H. Wang, Int. J. Antimicrob. Agents, 2008, 31, 497; DOI: https://doi.org/10.1016/j.ijantimicag.2008.01.007.

    Article  CAS  PubMed  Google Scholar 

  22. Q. Cheng, F. Zhang, Y. Cai, Y.-L. Guo, S.-L. You, Angew. Chem., Int. Ed., 2018, 57, 2134; DOI: https://doi.org/10.1002/anie.201711873.

    Article  CAS  Google Scholar 

  23. X. Liu, D. Yang, K. Wang, J. Zhang, R. Wang, Green Chem., 2017, 19, 82; DOI: https://doi.org/10.1039/c6gc02517j.

    Article  CAS  Google Scholar 

  24. Y. Li, F. Tur, R. P. Nielsen, H. Jiang, F. Jensen, K. A. Jørgensen, Angew. Chem., Int. Ed., 2016, 55, 1020; DOI: https://doi.org/10.1002/anie.201509693.

    Article  CAS  Google Scholar 

  25. J.-Q. Zhao, Z.-J. Wu, M.-Q. Zhou, X.-Y. Xu, X.-M. Zhang, W.-C. Yuan, Org. Lett., 2015, 17, 5020; DOI: https://doi.org/10.1021/acs.orglett.5b02489.

    Article  CAS  PubMed  Google Scholar 

  26. A. Awata, T. Arai, Angew. Chem., Int. Ed., 2014, 53, 10462; DOI: https://doi.org/10.1002/anie.201405223.

    Article  CAS  Google Scholar 

  27. G. W. Gribble, E. T. Pelkey, F. L. Switzer, Synlett, 1998, 1998, 1061; DOI: https://doi.org/10.1055/s-1998-1887.

    Article  Google Scholar 

  28. G. W. Gribble, E. T. Pelkey, W. M. Simon, H. A. Trujillo, Tetrahedron, 2000, 56, 10133; DOI: https://doi.org/10.1016/s0040-4020(00)00858-9.

    Article  CAS  Google Scholar 

  29. S. Roy, T. L. S. Kishbaugh, J. P. Jasinski, G. W. Gribble, Tetrahedron Lett., 2007, 48, 1313; DOI: https://doi.org/10.1016/j.tetlet.2006.12.125.

    Article  CAS  Google Scholar 

  30. H. Gérard, I. Chataigner, J. Org. Chem., 2013, 78, 9233; DOI: https://doi.org/10.1021/jo401482b.

    Article  PubMed  CAS  Google Scholar 

  31. E. T. Pelkey, L. Chang, G. W. Gribble, Chem. Commun., 1996, 1909; DOI: https://doi.org/10.1039/cc9960001909.

  32. Y. He, N. Zhao, L. Qiu, X. Zhang, X. Fan, Org. Lett., 2016, 18, 6054; DOI: https://doi.org/10.1021/acs.orglett.6b02998.

    Article  CAS  PubMed  Google Scholar 

  33. G. G. Pawar, A. Brahmanandan, M. Kapur, Org. Lett., 2016, 18, 448; DOI: https://doi.org/10.1021/acs.orglett.5b03493.

    Article  CAS  PubMed  Google Scholar 

  34. Z. Fan, J. Ni, A. Zhang, J. Am. Chem. Soc., 2016, 138, 8470; DOI: https://doi.org/10.1021/jacs.6b03402.

    Article  CAS  PubMed  Google Scholar 

  35. C. J. Whiteoak, O. Planas, A. Company, X. Ribas, Adv. Synth. Catal., 2016, 358, 1679; DOI: https://doi.org/10.1002/adsc.201600161.

    Article  CAS  Google Scholar 

  36. Y. Zhou, Z. Tang, Q. Song, Chem. Commun., 2017, 53, 8972; DOI: https://doi.org/10.1039/c7cc04433j.

    Article  CAS  Google Scholar 

  37. S. Manna, S. Jana, T. Saboo, A. Maji, D. Maiti, Chem. Commun., 2013, 49, 5286; DOI: https://doi.org/10.1039/c3cc41576g.

    Article  CAS  Google Scholar 

  38. T. Shen, Y. Yuan, N. Jiao, Chem. Commun., 2014, 50, 554; DOI: https://doi.org/10.1039/c3cc47336h.

    Article  CAS  Google Scholar 

  39. D. Tu, J. Luo, C. Jiang, Chem. Commun., 2018, 54, 2514; DOI: https://doi.org/10.1039/c8cc00267c.

    Article  CAS  Google Scholar 

  40. S. Mondal, S. Samanta, A. Hajra, Adv. Synth. Catal., 2018, 360, 1026; DOI: https://doi.org/10.1002/adsc.201701555.

    Article  CAS  Google Scholar 

  41. W.-T. Wei, W.-M. Zhu, W.-W. Ying, Y.-N. Wang, W.-H. Bao, L.-H. Gao, Y.-J. Luo, H. Liang, Adv. Synth. Catal., 2017, 359, 3551; DOI: https://doi.org/10.1002/adsc.201700870.

    Article  CAS  Google Scholar 

  42. G.-B. Deng, J.-L. Zhang, Y.-Y. Liu, B. Liu, X.-H. Yang, J.-H. Li, Chem. Commun., 2015, 51, 1886; DOI: https://doi.org/10.1039/c4cc08498e.

    Article  CAS  Google Scholar 

  43. B. J. Stokes, S. Liu, T. G. Driver, J. Am. Chem. Soc., 2011, 133, 4702; DOI: https://doi.org/10.1021/ja111060q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Colonna, L. Greci, M. Poloni, J. Chem. Soc., Perkin Trans. 2, 1981, 628; DOI: https://doi.org/10.1039/p29810000628.

  45. M. Colonna, L. Greci, M. Poloni, J. Chem. Soc., Perkin Trans. 2, 1984, 165; DOI: https://doi.org/10.1039/p29840000165.

  46. E. T. Pelkey, Synthesis, 1999, 1999, 1117; DOI: https://doi.org/10.1055/s-1999-3512.

    Article  Google Scholar 

  47. E. Shaw, D. W. Woolley, J. Am. Chem. Soc., 1953, 75, 1877; DOI: https://doi.org/10.1021/ja01104a029.

    Article  CAS  Google Scholar 

  48. W. E. Noland, L. R. Smith, K. R. Rush, J. Org. Chem., 1965, 30, 3457; DOI: https://doi.org/10.1021/jo01021a044.

    Article  CAS  Google Scholar 

  49. W. E. Noland, K. R. Rush, J. Org. Chem., 1966, 31, 70; DOI: https://doi.org/10.1021/jo01339a014.

    Article  CAS  Google Scholar 

  50. A. González, C. Gálvez, Synthesis, 1983, 1983, 212; DOI: https://doi.org/10.1055/s-1983-30285.

    Article  Google Scholar 

  51. V. M. Lyubchanskaya, L. M. Alekseeva, V. G. Granik, Chem. Heterocycl. Compd., 1992, 28, 34; DOI: https://doi.org/10.1007/BF00529475.

    Article  Google Scholar 

  52. V. G. Granik, N. B. Grigor’ev, Russ. Chem. Rev., 2011, 80, 182; DOI: https://doi.org/10.1070/RC2011v080n02ABEH004135.

    Article  CAS  Google Scholar 

  53. F. Rusch, L.-N. Unkel, D. Alpers, F. Hoffmann, M. Brasholz, Chem. Eur. J., 2015, 21, 8336; DOI: https://doi.org/10.1002/chem.201500612.

    Article  CAS  PubMed  Google Scholar 

  54. D. Hellwinkel, F. Lämmerzahl, G. Hofmann, Chem. Ber., 1983, 116, 3375; DOI: https://doi.org/10.1002/cber.19831161014.

    Article  CAS  Google Scholar 

  55. R. R. Walvoord, M. C. Kozlowski, J. Org. Chem., 2013, 78, 8859; DOI: https://doi.org/10.1021/jo401249y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. A. Ageshina, G. K. Sterligov, S. A. Rzhevskiy, M. A. Topchiy, G. A. Chesnokov, P. S. Gribanov, E. K. Melnikova, M. S. Nechaev, A. F. Asachenko, M. V. Bermeshev, Dalton Trans., 2019, 48, 3447; DOI: https://doi.org/10.1039/C9DT00216B.

    Article  CAS  PubMed  Google Scholar 

  57. P. S. Gribanov, Y. D. Golenko, M. A. Topchiy, A. N. Philippova, N. Y. Kirilenko, N. V. Krivoshchapov, G. K. Sterligov, A. F. Asachenko, M. V. Bermeshev, M. S. Nechaev, Mendeleev Commun., 2018, 28, 323; DOI: https://doi.org/10.1016/j.mencom.2018.05.032.

    Article  CAS  Google Scholar 

  58. G. A. Chesnokov, P. S. Gribanov, M. A. Topchiy, L. I. Minaeva, A. F. Asachenko, M. S. Nechaev, E. V. Bermesheva, M. V. Bermeshev, Mendeleev Commun., 2017, 27, 618; DOI: https://doi.org/10.1016/j.mencom.2017.11.027.

    Article  CAS  Google Scholar 

  59. A. A. Ageshina, G. A. Chesnokov, M. A. Topchiy, I. V. Alabugin, M. S. Nechaev, A. F. Asachenko, Org. Biomol. Chem., 2019, 17, 4523; DOI: https://doi.org/10.1039/c9ob00615j.

    Article  CAS  PubMed  Google Scholar 

  60. S. Sueki, Y. Guo, M. Kanai, Y. Kuninobu, Angew. Chem., Int. Ed., 2013, 52, 11879; DOI: https://doi.org/10.1002/anie.201306360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Asachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, G.A., Ageshina, A.A., Maryanova, A.V. et al. Nitromethane as a reagent for the synthesis of 3-nitroindoles from 2-haloarylamine derivatives. Russ Chem Bull 69, 2370–2377 (2020). https://doi.org/10.1007/s11172-020-3028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-3028-8

Key words

Navigation