Skip to main content
Log in

Ternary Fission Mass Distributions of Superheavy Nuclei Within a Statistical Model

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Theoretical models predict the existence of an island of stability at the proton shell closures Z = 114 or 120 or 126 and at the neutron shell closure N = 184 due to the microscopic shell effects. In this article, mass distributions of fragments from ternary fission of superheavy nuclei are investigated with the aid of the statistical theory. We have computed the fission mass distributions for the simultaneous decay into three fragments of nuclei 298Fl, \(^{304}_{120}\)X and \(^{310}_{126} \)X, at the two excitation energies E = 20 and 50 MeV, with the constraint on one of the fragment to be 50Ca and 72Ni. With the fixed third fragments of mass number A3 = 50, 72, asymmetric breakup (A1A2) has a larger ternary fission yield for Z = 114, 120 and 126 isotopes. Predominantly, one of the fragments with the neutron closed-shell nucleus (N ≈ 82, 50) is favoured at higher excitation energies. Subsequently, we have considered the ternary fragmentation of the neutron-rich superheavy elements \(^{314}_{120}\)X and \(^{320}_{126} \)X again for the same excitation energies and fixed third fragment. Interestingly, for the superheavy nucleus \(^{314}_{120}\)X, symmetric fission (A1A2) with doubly closed-shell nuclei 132Sn for the third fragment 50Ca is favoured at higher E. For the isotope \(^{320}_{126} \)X, relative yields of fragments with closed shell increase at higher excitation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://www-nds.iaea.org/ripl-3/.

References

  1. S.A. Giuliani, Z. Matheson, W. Nazarewicz, et al., Rev. Mod. Phys. 91, 011001 (2019)

    ADS  Google Scholar 

  2. W. Nazarewicz, Nat. Phys. 14, 537 (2018)

    Google Scholar 

  3. V. Viola, G. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)

    Google Scholar 

  4. Y.K. Gambhir, A. Bhagwat, M. Gupta, J. Phys. G: Nucl. Part. Phys. 42, 125105 (2015)

    ADS  Google Scholar 

  5. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Google Scholar 

  6. S.G. Nilsson, C.F. Tsang, A. Sobiczewski, et al., Nucl. Phys. A. 131, 1 (1969)

    ADS  Google Scholar 

  7. A. Sobiczewski, F. Gareev, B. Kalinkin, Phys. Lett. 22, 500 (1966)

    ADS  Google Scholar 

  8. A.V. Afanasjev, T.L. Khoo, S. Frauendorf, G.A. Lalazissis, I. Ahmad, Phys. Rev. C. 67, 024309 (2003)

    ADS  Google Scholar 

  9. A. V. Afanasjev, Phys. Scr. T125, 62 (2006)

    ADS  Google Scholar 

  10. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C. 60, 034304 (1999)

    ADS  Google Scholar 

  11. S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A. 611, 211 (1996)

    ADS  Google Scholar 

  12. A.T. Kruppa, M. Bender, W. Nazarewicz, et al., Phys. Rev. C. 61, 034313 (2000)

    ADS  Google Scholar 

  13. K. Rutz, M. Bender, T. Bürvenich, et al., Phys. Rev. C. 56, 238 (1997)

    ADS  Google Scholar 

  14. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    ADS  Google Scholar 

  15. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, et al., Eur. Phys. J. A. 15, 201 (2002)

    ADS  Google Scholar 

  16. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, et al., Phys. Rev. C. 74, 044602 (2006)

    ADS  Google Scholar 

  17. M.G. Itkis, Y.T. Oganessian, V.I. Zagrebaev, Phys. Rev. C. 65, 044602 (2002)

    ADS  Google Scholar 

  18. P. Armbruster, Annu. Rev. Nucl. Part. Sci. 35, 135 (1985)

    ADS  Google Scholar 

  19. G. Münzenberg, Rep. Prog. Phys. 51, 57 (1988)

    ADS  Google Scholar 

  20. P. Armbruster, Y.K. Agarwal, W. Brüchle, et al., Phys. Rev. Lett. 54, 406 (1985)

    ADS  Google Scholar 

  21. Y.T. Oganessian, A.V. Yeremin, A.G. Popeko, et al., Nature. 400, 242 (1999)

    ADS  Google Scholar 

  22. E. Vardaci, M.G. Itkis, I.M. Itkis, G. Knyazheva, E.M. Kozulin, Journal of Physics G: Nuclear and Particle Physics. 46, 103002 (2019)

    ADS  Google Scholar 

  23. R.L. Fleischer, P.B. Price, R.M. Walker, E.L. Hubbard, Phys. Rev. 143, 943 (1966)

    ADS  Google Scholar 

  24. H. Becker, P. Vater, R. Brandt, A. Boos, H. Diehl, Phys. Lett. B. 50, 445 (1974)

    ADS  Google Scholar 

  25. W.J. Swiatecki, in . Second UN International Conference on the Peaceful Uses of Atomic Energy, Geneva (Pergamon Press, London, 1960), p. 1958

  26. H. Diehl, W. Greiner, Phys. Lett. B. 45, 35 (1973)

    ADS  Google Scholar 

  27. H. Schultheis, R. Schultheis, Phys. Lett. B. 49, 423 (1974)

    ADS  Google Scholar 

  28. H. Schultheis, R. Schultheis, Phys. Rev. C. 15, 1601 (1977)

    ADS  Google Scholar 

  29. H. Schultheis, R. Schultheis, Phys. Lett. B. 58, 384 (1975)

    ADS  Google Scholar 

  30. K. Manimaran, M. Balasubramaniam, Eur. Phys. Jour. A. 45, 293 (2010)

    ADS  Google Scholar 

  31. M. Balasubramaniam, K.R. Vijayaraghavan, K. Manimaran, Phys. Rev. C. 93, 014601 (2016)

    ADS  Google Scholar 

  32. A.K. Nasirov, W. von Oertzen, A.I. Muminov, R.B. Tashkhodjaev, Phys. Scr. 89, 054022 (2014)

    ADS  Google Scholar 

  33. M. Rajasekaran, V. Devanathan, Phys. Rev. C. 24, 2606 (1981)

    ADS  Google Scholar 

  34. M. Balasubramaniam, C. Karthikraj, S. Selvaraj, N. Arunachalam, Phys. Rev. C. 90, 054611 (2014)

    ADS  Google Scholar 

  35. M.T. Senthil Kannan, B. Kumar, M. Balasubramaniam, B.K. Agrawal, S.K. Patra, Phys. Rev. C. 95, 064613 (2017)

    ADS  Google Scholar 

  36. C. Karthikraj, S. Subramanian, S. Selvaraj, Eur. Phys. J. A. 52, 173 (2016)

    ADS  Google Scholar 

  37. V.I. Zagrebaev, A.V. Karpov, W. Greiner, Phys. Rev. C. 81, 044608 (2010)

    ADS  Google Scholar 

  38. M.T. Senthil Kannan, M. Balasubramaniam, Eur. Phys. J. A. 53, 164 (2017)

    ADS  Google Scholar 

  39. P. Fong, Phys. Rev. 102, 434 (1956)

    ADS  Google Scholar 

  40. H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937)

    ADS  Google Scholar 

  41. T. Ericson, Adv. Phys. 9, 425 (1960)

    ADS  Google Scholar 

  42. A. Bohr, B. Mottelson, Vol. I. Nuclear Structure (Benjamin, New York, 1969)

    MATH  Google Scholar 

  43. V.S. Ramamurthy, S.S. Kapoor, S.K. Kataria, Phys. Rev. Lett. 25, 386 (1970)

    ADS  Google Scholar 

  44. J.R. Huizenga, L.G. Moretto, Ann. Rev. Nucl. Sci. 22, 427 (1972)

    ADS  Google Scholar 

  45. P. Möller, J. Nix, At. Data Nucl. Data Tables. 39, 213 (1988)

    ADS  Google Scholar 

  46. Y.V. Pyatkov, D.V. Kamanin, W. von Oertzen, et al., Eur. Phys. Jour. A. 45, 29 (2010)

    ADS  Google Scholar 

  47. Y.V. Pyatkov, D.V. Kamanin, W. von Oertzen, et al., Eur. Phys. Jour. A. 48, 94 (2012)

    ADS  Google Scholar 

  48. A.V. Karpov, Phys. Rev. C. 94, 064615 (2016)

    ADS  Google Scholar 

  49. K.-H. Schmidt, A. Kelić, M.V. Ricciardi, Eur. Phys. Lett. 83, 32001 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Senthil Kannan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V. O. Chidambaram College and The M. D. T. Hindu College are affiliated to Manonmaniam Sundaranar University, Tirunelveli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, S., Kannan, M.T.S. & Selvaraj, S. Ternary Fission Mass Distributions of Superheavy Nuclei Within a Statistical Model. Braz J Phys 51, 136–143 (2021). https://doi.org/10.1007/s13538-020-00812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00812-4

Keywords

Navigation