Skip to main content
Log in

Multi-dimensional Instability of Dust Acoustic Waves in Magnetized Quantum Plasmas with Positive or Negative Dust

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A survey of dust acoustic waves (DAWs) in magnetized dusty plasmas composed of negatively or positively charged mobile dust and intertialess quantum electrons as well as ions is presented. The Zakharov-Kuznetsov (ZK) equation is derived via reductive perturbation technique. The solitary wave solution of ZK equation is given and the numerical analysis of the solution with parameters in dust crystals is performed to study the properties of the DAWs with positive or negative dust. The multi-dimensional instability of these solitary waves is investigated via small-k perturbation method. The instability criterion and growth rate relying on obliqueness, the density ratio between ions and dust, the dust cyclotron frequency, the Fermi temperature ratio between electrons and ions, and quantum diffraction parameter are discussed for both cases. The implications of these results to the interior of white dwarf stars and magnetars have been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.P. Misra, P.K. Shukla, C. Bhowmik, . Phys. Plasmas. 14, 082309 (2007)

    Article  ADS  Google Scholar 

  2. M.M. Hossain, A.A. Mamun, K.S. Ashrafi, . Phys. Plasmas. 18, 103704 (2011)

    Article  ADS  Google Scholar 

  3. M. Opher, L.O. Silva, D.E. Dauger, V.K. Decyk, J.M. Dawson, . Phys. Plasmas. 8, 2454 (2001)

    Article  ADS  Google Scholar 

  4. G. Chabrier, F. Douchin, A.Y. Potekhin, . J Phys. Condens. Matter. 14, 9133 (2002)

    Article  ADS  Google Scholar 

  5. G. Manfredi, . Fields Inst Commun. 46, 263 (2005)

    MathSciNet  Google Scholar 

  6. K.F. Berggren, Z.L. Ji, . Chaos. 6, 543 (1996)

    Article  ADS  Google Scholar 

  7. D. Kremp, T. Bornath, M. Bonitz, M. Schlanges, . Phys. Rev. E. 60, 4725 (1999)

    Article  ADS  Google Scholar 

  8. W. Masood, A. Mushtaq, R. Khan, . Phys. Plasmas. 14, 123702 (2007)

    Article  ADS  Google Scholar 

  9. S. Mahmood, . Phys. Plasmas. 15, 014502 (2008)

    Article  ADS  Google Scholar 

  10. S.A. Khan, A. Mushtaq, W. Masood, . Phys. Plasmas. 15, 013701 (2008)

    Article  ADS  Google Scholar 

  11. S.A. Khan, W. Masood, M. Siddiq, . Phys. Plasmas. 16, 013701 (2009)

    Article  ADS  Google Scholar 

  12. M. Akbari-Moghanjoughi, . Phys. Plasmas. 17, 052302 (2010)

    Article  ADS  Google Scholar 

  13. M.R. Rouhani, A. Akbarian, Z. Mohammadi, . Phys. Plasmas. 20, 082303 (2013)

    Article  ADS  Google Scholar 

  14. E. Emadi, H. Zahed, . Phys. Plasmas. 23, 083706 (2016)

    Article  ADS  Google Scholar 

  15. A. Mushtaq, . Phys. Plasmas. 14, 113701 (2007)

    Article  ADS  Google Scholar 

  16. H. Ur-Rehman, S.A. Khan, W. Masood, M. Siddiq, . Phys. Plasmas. 15, 124501 (2008)

    Article  ADS  Google Scholar 

  17. I.S. Elkamash, F. Haas, I. Kourakis, . Phys. Plasmas. 24, 092119 (2017)

    Article  ADS  Google Scholar 

  18. S. Hussain, N. Akhtar, . Phys. Plasmas. 24, 062109 (2017)

    Article  ADS  Google Scholar 

  19. P.A. Andreev, . Phys. Plasmas. 25, 042103 (2018)

    Article  ADS  Google Scholar 

  20. M. Ahmad, S. Fahad, W. Ur-Rahman, . Phys. Plasmas. 27, 013701 (2020)

    Article  ADS  Google Scholar 

  21. F. Sayed, S.V. Vladimirov, O. Ishihara, . Phys. Plasmas. 22, 083708 (2015)

    Article  ADS  Google Scholar 

  22. C. h. Rozina, M. Jamil, A.A. Khan, I. Zeba, J. Saman, . Phys. Plasmas. 24, 093702 (2017)

    Article  ADS  Google Scholar 

  23. D.N. Gao, C.L. Wang, X. Yang, W.S. Duan, L. Yang, . Phys. Plasmas. 19, 122112 (2017)

    Article  ADS  Google Scholar 

  24. M.K. Ghorui, G.H. Mondal, P. Chatterjee, . Astrophys. Space Sci. 346, 191 (2013)

    Article  ADS  Google Scholar 

  25. P. Sethi, N.S. Saini, Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2019.1679908 (2019)

  26. M. Irfan, S. Ali, Arshad M.M., . Phys. Plasmas. 26, 032101 (2019)

    Article  ADS  Google Scholar 

  27. M.A.H. Khaled, M.A. Shukri, Y.A.A. Hager, . Phys. Plasmas. 26, 103702 (2019)

    Article  ADS  Google Scholar 

  28. M. Shalaby, S.K. EL-Labany, E.F. EL-Shamy, W.F. El-Taibany, M.A. Khaled, . Phys. Plasmas. 16, 123706 (2009)

    Article  ADS  Google Scholar 

  29. W.F. El-Taibany, N.A. El-Bedwehy, E.F. El-Shamy, . Phys. Plasmas. 18, 033703 (2011)

    Article  ADS  Google Scholar 

  30. M.G.M. Anowar, A.A. Mamun, . IEEE T. Plasma Sci. 36, 28673 (2008)

    Article  Google Scholar 

  31. F. Haas, . Phys. Plasmas. 12, 062117 (2005)

    Article  ADS  Google Scholar 

  32. H. Ikezi, . The Phys Fluids. 29, 1764 (1986)

    Article  ADS  Google Scholar 

  33. T. Trottenberg, A. Melzer, A. Piel, . Plasma Sources Sci. Tech. 4, 450 (1995)

    Article  ADS  Google Scholar 

  34. M. Shalaby, S.K. EL-Labany, E.F. EL-Shamy, M.A. Khaled, . Phys. Plasmas. 17, 113709 (2010)

    Article  ADS  Google Scholar 

  35. C. Gardner, SIAMJ. Appl, . Math. 54, 409 (1994)

    Google Scholar 

Download references

Funding

This work was supported by Lanzhou City University Young Teachers Research Funding Project (No. LZCU-QN2018-06), Lanzhou City University Doctoral Research Startup Fund Project (No. LZCU-BS2018-13) and Key Talent Foundation of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ning Gao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DN. Multi-dimensional Instability of Dust Acoustic Waves in Magnetized Quantum Plasmas with Positive or Negative Dust. Braz J Phys 51, 66–74 (2021). https://doi.org/10.1007/s13538-020-00813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00813-3

Keywords

Navigation